文档详情

第二章 传感器的特性

20****03
实名认证
店铺
DOC
57KB
约10页
文档ID:152167744
第二章 传感器的特性_第1页
1/10

第二章 传感器的特性• 测量系统(检测系统)的特性跟传感器的特性几乎一样,因为传感器和测量系统都是用来对输入信号进行测量的,传感器可以看作是测量系统的一个部件(子系统),而传感器本身也可以看作是一个系统,因为一个完整的传感器也是由多个部件(子系统)组成的 • 传感器特性主要是指输入与输出之间的关系研究传感器的特性,以便用理论指导其设计、制造、校准和使用 • 当输入量为常量,或变化极慢时,这一关系称为静态特性;• 当输入量随时间较快地变化时,这一关系称为动态特性• 传感器输出与输入关系可用微分方程来描述理论上,将微分方程中的一阶及以上的微分项取为零时,即得到静态特性因此,传感器的静态特性只是动态特性的一个特例• 实际上传感器的静态特性要包括非线性和随机性等因素,如果把这些因素都引入微分方程,将使问题复杂化为避免这种情况,总是把静态特性和动态特性分开考虑• 传感器除了描述输入输出关系的特性之外,还有与使用条件、使用环境、使用要求等有关的特性• 传感器的输入与输出具有的确定对应关系最好呈线性关系但一般情况下,输入输出不会符合所要求的线性关系,同时由于存在迟滞、蠕变、摩擦、间隙和松动等各种因素以及外界条件的影响,使输入输出对应关系的唯一确定性也不能实现。

• 第一节 传感器的静态特性• 传感器的静态特性表示输入量(被测量)x不随时间变化,输出量y与输入量x之间的函数关系通常表示为• 式中:ai——传感器的标定系数,反映了传感器静态特性曲线的形态• 上述静态模型有三种特殊形式:• (1)线性特性线性传感器有另种情况:• ①若 ,特性曲线是一条不过零的直线• ②若 ,特性曲线是一条过零的直线,这是理想的传感器应具有的特性,只有具备这样的特性才能正确无误地反映被测量的真值• (2)仅有偶次非线性项因为它没有对称性,所以线性范围较窄• (3)仅有奇次非线性项具有这样特性的传感器一般输入量x在相当大的范围内具有较宽的准线性,这是较接近理想线性的非线性特性它相对坐标原点是对称的,即• 所以它具有相当宽的近似线性范围• 1.测量范围和量程• 传感器所能测量到的最小被测量(输入) 与最大被测量(输入) 之间的范围称为传感器的测量范围(Measuring Range),表示为( , )传感器测量范围的上限值与下限值之差 - 称为量程(Span)• 例如,某温度传感器的测量范围是-30~ +120℃,那么该传感器的量程为150℃。

• 在实际应用中,传感器的量程选择是一个简单却需要特别注意的问题一般的传感器产品所给出的精度都是针对满量程的相对值,如0.1%FS,因此实际使用时越接近满量程,其测量准确度越高 • 2.线性度(Linearity)• 理想的传感器静态特性曲线是一条直线而实际传感器的输入输出关系或多或少地存在非线性因此传感器实际的静态特性校准曲线与某一参考直线不吻合程度的最大值称为线性度在不考虑迟滞、蠕变、不稳定性等因素的情况下,其静态特性可用下列多项式代数方程表示:• 式中:y—输出量; x—输入量; a0—零点输出;• a1—理论灵敏度;a2、a3、 … 、 an—非线性项系数• 各项系数不同,决定了特性曲线的具体形式• 静态特性曲线可实际测试获得在获得特性曲线之后,可以说问题已经得到解决但是为了标定和数据处理的方便,希望得到线性关系这时可采用各种方法,其中也包括硬件或软件补偿,进行线性化处理• 一般来说,这些办法都比较复杂所以在非线性误差不太大情况下,总是采用直线拟合的办法来线性化• 在采用直线拟合线性化时,输入输出的校正曲线与其拟合曲线之间的最大偏差,就称为非线性误差或线性度(Linearity)。

• 通常用相对误差γL表示:• ΔLmax —最大非线性误差;yFS—全量程输出• 非线性偏差的大小是以一定的拟合直线为基准直线而得出来的拟合直线不同,非线性误差也不同所以,选择拟合直线的主要出发点,应是获得最小的非线性误差另外,还应考虑使用是否方便,计算是否简便 • 目前常用的拟合方法有:• ①理论拟合;②过零旋转拟合;③端点连线拟合;④端点连线平移拟合;⑤最小二乘拟合;⑥最小包容拟合• 前四种方法如下图所示• 图a)中,拟合直线为传感器的理论特性,与实际测试值无关该方法十分简单,但一般来说DLmax较大• 图b)为过零旋转拟合,常用于曲线过零的传感器拟合时,使DL1=|DL2|=DLmax这种方法也比较简单,非线性误差比前一种小很多• 图c)中,把输出曲线两端点的连线作拟合直线这种方法比较简便,但DLmax也较大• 图d)是在图c)的基础上使直线平移,移动距离为原先 DLmax的一半,这样输出曲线分布于拟合直线的两侧,DL2=|DL1|=|DL3|=DLmax与图c)相比,非线性误差减小一半,提高了精度• 也就是 对k和b一阶偏导数等于零,即:• 将k和b代入拟合直线方程,即可得到拟合直线,然后求出残差的最大值ΔLmax即为非线性误差。

• 顺便指出,大多数传感器的输出曲线是通过零点的,或者使用“零点调节”使它通过零点某些量程下限不为零的传感器,也应将量程下限作为零点处理• 3.静态灵敏度(Sensitivity)与灵敏度误差• 传感器输出的变化量Dy与引起该变化量的输入变化量Dx之比即为其静态灵敏度,其表达式为:• S=Δy/Δx• 灵敏度的量纲取决于输入、输出的量纲• 由此可见,传感器输出曲线的斜率就是其静态灵敏度,它反映了传感器的输入(被测量)单位变化引起的输出变化的大小对线性特性的传感器,其特性曲线的斜率处处相同,灵敏度k是一常数,与输入量大小无关而非线性传感器的静态灵敏度为变量 • 静态灵敏度是重要的性能指标,可以根据传感器的测量范围、抗干扰能力等进行选择特别是传感器中的敏感元件灵敏度尤为关键在选择或设计敏感元件结构及其参数时,应使输出对被测量的灵敏度尽可能地大,而对干扰量的灵敏度尽可能地小• 由于某种原因,会引起灵敏度变化,产生灵敏度误差灵敏度误差用相对误差表示,即:• 选择灵敏度指标时应综合考虑各参数的要求,既要满足使用要求,又能做到经济合理一般来说,系统的灵敏度越高,测量范围越窄,系统的稳定性也往往越差。

• 4.分辨力• 传感器的输入与输出关系在整个测量范围内不可能做到处处连续输入量变化太小时输出量不会发生变化;只有当输入量变化到一定程度时,输出量才发生变化,即输出呈现“阶梯型”传感器能检测到的最小的输入增量 的绝对值称为分辨力• 有些传感器,当输入量连续变化时,输出量只作阶梯变化,则分辨力就是输出量的每个“阶梯”所代表的输入量的大小• 分辨力反映了传感器检测输入微小变化的能力影响传感器分辨力的因素很多,如机械运动部件的干摩擦和卡塞、电路中的储能元件和A/D的位数等• 在传感器的测量范围内,由于其输入/输出之间呈非线性关系,所以在不同输入时分辨力不同,用 表示传感器的分辨力分辨力用绝对值表示• 用与满量程的百分数表示的分辨力称为分辨率• 在传感器输入零点附近(输入最小测点(或零点)处)的分辨力称为阈值(Threshold)或死区(Dead Bend) • 5.阈值(Threshold)• 在传感器输入零点附近的分辨力称为阈值• 阈值通常称为灵敏度界限(灵敏限)或门槛灵敏度、灵敏阈、失灵区、死区(Dead Bend)等• 有的传感器在零位附近有严重的非线性,形成所谓的“死区”,则将“死区”的大小作为阈值;更多情况下,阈值主要取决于传感器噪声的大小,因而有的传感器只给出噪声电平。

零位附近对输出量的变化往往不敏感,所以实际上阈值反映的是指传感器零点附近的分辨能力• 重复性误差也常用绝对误差表示检测时也可选取几个测试点,对应每一点多次从同一方向趋近,获得输出值系列yi1,yi2,yi3,…,yin ,算出最大值与最小值之差或3σ作为重复性偏差ΔRi,在几个ΔRi中取出最大值ΔRmax 作为重复性误差 • 8.稳定性• 稳定性是指传感器的特性随时间不发生变化的能力稳定性有短期稳定性和长期稳定性之分对于传感器,常用长期稳定性来描述其稳定性,即传感器在长时间工作的情况下保持原特性的能力,有时称为长时间工作稳定性或零点漂移• 测试时先将传感器输出调至零点或某一特定点,相隔4h、8h或一定的工作次数后,再读出输出值,前后两次输出值之差即为稳定性误差它可用相对误差表示,也可用绝对误差表示• 若要进一步细分,传感器的稳定性有两个指标:一是测量传感器输出值在一段时间中的变化,以稳定度表示;二是传感器在外部环境和工作条件变化引起输出值的不稳定,用影响量表示• 影响量指传感器外界环境或工作条件变化引起输出值变化的量它是由温度、湿度、气压、振动、电源电压及电源频率等一些外加环境影响所引起的。

说明影响量时,必须将影响因素与输出值偏差同时表示9.漂移• 传感器的漂移是指在一定的时间间隔内,传感器的输出存在着与输入量无关的变化传感器的漂移大小是传感器性能稳定性的重要指标漂移包括零点漂移和灵敏度漂移零点漂移和灵敏度漂移又可分为时间漂移(时漂)和温度漂移(温漂)时漂是指在规定条件下,零点或灵敏度随时间的缓慢变化;温漂是指周围温度变化引起的零点或灵敏度漂移 • 10.温度稳定性• 温度稳定性又称为温度漂移,是指传感器在外界温度发生变化的情况下输出量发生的变化• 测试时先将传感器置于一定温度(如20℃),将其输出调至零点或某一特定点,使温度上升或下降一定的度数(如5℃或10℃),再读出输出值,前后两次输出值之差即为温度稳定性误差• 温度稳定性误差用温度每变化若干℃的绝对误差或相对误差表示,每℃引起的传感器误差又称为温度误差系数• 11.抗干扰稳定性• 指传感器对外界干扰的抵抗能力,例如抗冲击和振动的能力、抗潮湿的能力、抗电磁场干扰的能力等• 评价这些能力比较复杂,一般也不易给出数量概念,需要具体问题具体分析• 12.静态误差• 静态误差是指传感器在其全量程内任一点的输出值与其理论值的偏离程度。

反映了传感器的精度指标,而精度是十分重要的指标• 静态误差的求取方法如下:把全部输出数据与拟合直线上对应值的残差,看成是随机分布,求出其标准偏差,即• 式中 Dyi—各测试点的残差;n一测试点数• 取2σ和3σ值即为传感器的静态误差静态误差也可用相对误差来表示,即:• 上式中的 表示传感器的量程,因此,有时把静态误差称为满量程误差在选择传感器时,要注意的是当量程一定时,满量程误差大小反映了静态误差大小当σ一定时,量程越大,相对误差越小在具体应用传感器时,测试点越接近满量程,相对误差越小• 静态误差是一项综合性指标,它基本上包括了非线性误差、迟滞误差、重复性误差、零敏度误差等,若这几项误差是随机的、独立的、正态分布的,也可以把这几个单项误差综合而得,即• 13.精确度• 与精度有关指标:精密度、准确度和精确度(以下简称精度)• 精密度:说明测量传感器输出值的分散性,即对某一稳定的被测量,由同一个测量者,用同一个传感器,在相当短的时间内连续重复测量多次,其测量结果的分散程度例如,某测温传感器的精密度为0.5℃精密度是随机误差大小的标志,精密度高,意味着随机误差小注意:精密度高。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档