大连理工大学大学物理实验报告院(系)材料学院专业材料物理班级0705成绩姓名学号实验台号实验时间2008 年11月04日,第 11 周,星期二第5-6节教师签字实验名称 光的等厚干涉教师评语实验目的与要求:1. 观察牛顿环现象及其特点, 加深对等厚干涉现象的认识和理解2. 学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度3. 掌握读数显微镜的使用方法实验原理和内容:1. 牛顿环牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成, 结构如图所示当平行单色光垂直照射到牛顿环器件上时, 由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜, 经空气膜和玻璃之间的上下界面反射的两束光存在光程差, 它们在平凸透镜的凸面(底面)相遇后将发生干涉, 干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆, 称为牛顿环(如图所示 由牛顿最早发现) 由于同一干涉圆环各处的空气薄膜厚度相等, 故称为等厚干涉 牛顿环实验装置的光路图如下图所示:- 1 -设射入单色光的波长为 λ, 在距接触点 r k 处将产生第 k 级牛顿环, 此处对应的空气膜厚度为dk, 则空气膜上下两界面依次反射的两束光线的光程差为k2nd k2式中, n 为空气的折射率(一般取 1), λ/2 是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。
根据干涉条件, 当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上下界面上的两束反射光的光程差存在两种情况:2kk2dk22(2k 1)2K=1,2,3, ., 明环K=0,1,2, ., 暗环由 上 页 图 可 得 干 涉 环 半 径 rk , 膜 的 厚 度 dk 与 平 凸 透镜 的 曲 率 半 径 R 之 间 的 关 系R2( R dk ) 2rk2 由于 dk 远小于 R, 故可以将其平方项忽略而得到2Rdkrk2 结合以上的两种情况公式,得到:rk22RdkkR ,k 0,1,2..., 暗环由以上公式课件,rk 与 dk 成二次幂的关系,故牛顿环之间并不是等距的,且为了避免背光因素干扰, 一般选取暗环作为观测对象而在实际中由于压力形变等原因,凸透镜与平板玻璃的接触不是一个理想的点而是一个圆面;另外镜面沾染回程会导致环中心成为一个光斑,这些都致使干涉环的级数和半径无法准确测量而使用差值法消去附加的光程差,用测量暗环的直径来代替半径,都可以减少以上类型的误差出现由上可得:D 2mD 2nRn)4(m式中, D m、 D n 分别是第 m 级与第 n 级的暗环直径,由上式即可计算出曲率半径R。
由于式中使用环数差 m-n 代替了级数 k, 避免了圆环中心及暗环级数无法确定的问题凸透镜的曲率半径也可以由作图法得出测得多组不同的Dm 和 m, 根据公式 D 2m4Rm ,可知只要作图求出斜率4R , 代入已知的单色光波长,即可求出凸透镜的曲率半径R2. 劈尖将两块光学平玻璃叠合在一起,并在其另一端插入待测的薄片或细丝(尽可能使其与玻璃的搭接线平行), 则在两块玻璃之间形成以空气劈尖,如下图所示:- 2 -当单色光垂直射入时, 在空气薄膜上下两界面反射的两束光发生干涉; 由于空气劈尖厚度相等之处是平行于两玻璃交线的平行直线, 因此干涉条纹是一组明暗相间的等距平行条纹, 属于等厚干涉 干涉条件如下:k 2dk (2k 1) k=0, 1, 2,2 2可知, 第 k 级暗条纹对应的空气劈尖厚度为d kk2由干涉条件可知,当 k=0时 d0=0, 对应玻璃板的搭接处,为零级暗条纹若在待测薄物体出出现的是第 N 级暗条纹,可知待测薄片的厚度(或细丝的直径)为dN2实际操作中由于N 值较大且干涉条纹细密,不利于 N 值的准确测量可先测出 n 条干涉条纹的距离 l , 在测得劈尖交线到薄片处的距离为L , 则干涉条纹的总数为:N n L l代入厚度计算式, 可得厚度 /直径为:d n L2 l主要仪器设备:读数显微镜, 纳光灯, 牛顿环器件, 劈尖器件。
步骤与操作方法:1. 牛顿环直径的测量( 1) 准备工作: 点亮并预热纳光灯;调整光路, 使纳光灯均匀照射到读数显微镜的反光镜上, 并调节反光镜片使得光束垂直射入牛顿环器件 恰当调整牛顿环器件, 直至肉眼课件细小的正常完整的牛顿环干涉条纹后, 把牛顿环器件放至显微镜的中央并对- 3 -准 完成显微镜的调焦, 使牛顿环的中央与十字交叉的中心对准后, 固定牛顿环器件 2) 测量牛顿环的直径:从第 6 级开始逐级测量到第 15 级暗环的直径,使用单项测量法转动测微鼓轮,从零环处开始向左计数,到第 15 级暗环时,继续向左跨过直至第 18级暗环后反向转动鼓轮(目的是消除空程误差), 使十字线返回到与第15 级暗环外侧相切时,开始读数;继续转动鼓轮, 均以左侧相切的方式,读取第 14,13,12.7, 6 级暗环的读数并记录继续转动鼓轮,使十字叉线向右跨过圆环中心,使竖直叉丝依次与第6级到第 15级的暗环的右内侧相切,顺次记录读数同一级暗环的左右位置两次读数之差为暗环的直径2. 用劈尖测量薄片的厚度(或细丝直径)( 1)将牛顿环器件换成劈尖器件,重新进行方位与角度调整,直至可见清晰的平行干涉条纹, 且条纹与搭接线平行;干涉条纹与竖直叉丝平行。
2)在劈尖中部条纹清晰处,测出每隔10条暗纹的距离 l, 测量 5 次 3)测出两玻璃搭接线到薄片的有效距离L,测量 5次 注意, 测量时, 为了避免螺距的空程误差, 读数显微镜的测微鼓轮在每一次测量过程中只能单方向旋转, 中途不能反转 4 -数据记录与处理:牛顿环第一次测量直径nl1514131211109876Rl/mm29.34229.24329.15129.05628.95928.85128.75528.63128.51328.380nr1514131211109876Rr/mm23.52223.60723.69923.79623.90524.05124.10124.22424.37224.489第二次测量直径nl1514131211109876Rl/mm27.22427.12527.02526.93426.83326.73226.62626.52026.39226.262nr1514131211109876Rr/mm21.39521.47921.57921.68221.78121.88121.99222.10822.22622.262劈尖干涉短距离( l)n123456l0/mm8.1167.7349.4626.6293.8511.212l1/mm6.8796.4218.1595.3132.532-0.113劈尖干涉全距离( L )n123456L0/mm0.1550.0110.4910.2820.1250.229L1/mm40.4640.62240.65340.6140.60840.702- 5 -结果与分析: (除了序号外, 没有标注的数据单位均为 mm)由牛顿环半径, 用逐差法计算平凸透镜的曲率半径:由第一组数据获得的环直径:n1514131211109876D/mm5.8205.6365.4525.2605.0544.8004.6544.4074.1413.891由第二组数据获得的环直径:n1514131211109876D/mm5.8295.6465.4465.2525.0524.8514.6344.4124.1664.000由以上两组数据获得直径平均值为:n1514。