材料的热学性能_2

上传人:F****n 文档编号:88240757 上传时间:2019-04-21 格式:PPT 页数:127 大小:3.28MB
返回 下载 相关 举报
材料的热学性能_2_第1页
第1页 / 共127页
材料的热学性能_2_第2页
第2页 / 共127页
材料的热学性能_2_第3页
第3页 / 共127页
材料的热学性能_2_第4页
第4页 / 共127页
材料的热学性能_2_第5页
第5页 / 共127页
点击查看更多>>
资源描述

《材料的热学性能_2》由会员分享,可在线阅读,更多相关《材料的热学性能_2(127页珍藏版)》请在金锄头文库上搜索。

1、第六章 材料的热学性能,6.1 材料的热容 6.1.1固体热容理论简介 6.1.2金属和合金的热容 6.1.3陶瓷材料的热容 6.1.4相变对热容的影响 6.1.5热分析及其应用 6.2 材料的热膨胀 6.2.1材料的热膨胀及膨胀系数 6.2.2热膨胀与其它物理量的关系及影响因素 6.2.3多晶体及复合材料的热膨胀 6.2.4热膨胀测试方法及应用,6.3 材料的导热性 6.3.1热传导的宏观和微观机制 6.3.2金属的热传导 6.3.3无机非金属材料的热传导 6.4材料的热电性 6.4.1热电效应 6.4.2绝对热电势系数 6.4.3热电性的应用及热电材料 6.5材料的热稳定性 6.5.1热稳

2、定性的表征 6.5.2热应力 6.5.3抗热冲击性能,热学性能:包括热容(thermal content),热膨胀(thermal expansion),热传导(heat conductivity),热稳定性(thermal stability)热辐射(Thermal Emission),热电势(thermoelectric force )等。本章目的就是探讨固体热容理论,材料热性能的一般规律,主要测试方法及在材料研究中的应用,热性能与材料宏观、微观本质关系,为研究新材料、探索新工艺打下理论基础。,工程上许多特殊场合对材料的热学性能提出了一些特殊的要求如:,微波谐振腔、精密天平、标准尺等要求用

3、低膨胀系数的材料;电真空封接材料要热膨胀系数一定;热敏元件要求尽可能高的膨胀系数;工业衬炉、航空飞行器,从返大气层的隔热材料要求具有良好的绝热性能;燃气轮机叶片和晶体管散热器等却要求优良的导热系数。因此在某些工程领域材料的热学性能往往成为技术的关键。,热力学性能的物理基础,热力学第一定律: 微分形式 热容C的表达式,热容是物体温度升高1K所需要增加的能量。,(J/K),显然,质量不同热容不同,温度不同热容也不同。比热容单位 , 摩尔热容单位 。,另外,平均热容 , 范围愈大,精度愈差。,恒压热容 恒容热容,对于固体和液体来说,Cp和CV近似相等,但是在要求较高的计算中不能忽略。 对于理想气体来

4、说,Cp,m CV,m = R,其中R是理想气体常数,式中:Q热量,E内能,H热焓。由于恒压加 热物体除温度升高外,还要对外界做功,所以 根据热力学第二定律可以导出:,式中:V0摩尔容积, 体膨胀系数 (expansion coefficient), 压缩系数(compression coefficient)。,6.1.1固体热容理论简介 发展过程,固体热容源于受热后点阵离子的振动加剧和体积膨胀对外做功。固体热容理论,根据原子(离子)热振动的特点导出,从理论上阐明了热容的本质并建立热容随温度变化的关系。其发展过程从经典热容理论 爱因斯坦量子热容理论 徳拜量子热容理论 以及其后对徳拜量子热容理论

5、的完善和发展。,6.1材料的热容,6.1.1.1一经典热容理论杜隆珀替定律,早在19世纪,杜隆-珀替把气体分子热容理论直接应用于固体,假定晶体类似于金属气体,其点阵是孤立的。,杜隆珀替定律在高温时与实验结果很吻合。但在低温时,CV 的实验值并不是一个恒量。,由上式可知,热容是与温度T无关的常数(constant),这就是杜隆一珀替定律。,按热容定义,,实验指出绝缘体的比热按 趋近于零,对导体来说,比热按 趋近于零。,6.1.1.2晶态固体热容的量子理论(quantum theory) 普朗克提出振子能量的量子化理论。质点的能量都是以 hv 为最小单位. 式中, 普朗克常数, 普朗克常数, =

6、角频率。,将上式中多项式展开各取前几项,化简得:,根据麦克斯威波尔兹曼分配定律可推导出,在温度为T时,一个振子的平均能量为:,在高温时, 所以 即每个振子单向振动的总能量与经典理论一致。由于1mol固体中有N个原子,每个原子的热振动自由度是3,所以1mol固体的振动可看做3N个振子的合成运动,则1mol固体的平均能量为:,这就是按照量子理论求得的热容表达式。但要计算CV必须知道谐振子的频谱非常困难(very difficult)。 1爱因斯坦模型(Einstein model) 他提出的假设是:每个原子都是一个独立的振子,原子之间彼此无关,并且都是以相同的角频w振动,则上式变化为:,式中, 爱

7、因斯坦比热函数,令 爱因斯坦温度(einstein temperature)。 当T很高时, ,则:,则 即在高温时,爱因斯坦的简化模型与杜隆珀替公式相一致。 但在低温时,即 , 即说明CV值按指数规律随温度T而变化,而不是从实验中得出的按T3变化的规律。这样在低温区域,爱斯斯坦模型与实验值相差较大,这是因为原子振动间有耦合作用的结果。,2德拜比热容,德拜考虑了晶体中原子的相互作用,把晶体近似为连续介质(continuous medium)。,德拜特征温度 德拜比热函数,,其中,式中,,由上式可以得到如下的结论: (1)当温度较高时,即, , 即杜隆珀替定律。 (2)当温度很低时,即 ,计算得

8、 这表明当T0时,CV与T3成正比并趋于0,这就是德拜T3定律,它与实验结果十分吻合,温度越低,近似越好。,6.1.2 金属和合金的热容,温度很低时,原子振动热容( )满足徳拜热容公式,则电子热容与原子热容之比为 若取 , ,则 当 T1.4K时,即 实验证明,当温度低于5K以下, 即热容以电子贡献为主。分析表明当温度很低时,金属热容需要同时考虑晶格振动和自由电子两部分的贡献。金属热容可以写成,6.1.2 .1 金属实验热容,6.1.2.2徳拜温度,A和B可由计算求得 而A和B也可通过实验测得,通过对比可检验理论的正确性。,定义: 林德曼公式 则: 徳拜温度反映原子结合力,不同材料 不同,熔点

9、高,材料原子结合力强, 高,尤其是M小的金属。,6.1.2.3合金热容,金属热容的一般概念适用于金属和多项合金。但合金中还应考虑合金相热容及合金形成热等。 诺埃曼-考普(Neumann-Kopp)定律: 适应多项混合组织,固溶体或化合物。对二元固溶体可以写成 理论与实验值最大误差4%,但应当指出它不适应于低温条件和铁磁性合金。,6.1.3 陶瓷材料的热容,陶瓷材料主要由离子键和共价键组成,室温下几乎无自由电子,因此热容与温度关系更符合徳拜模型。不同材料徳拜温度不同,取决于键合强度,材料弹性模量,熔点等。例如,石墨 =1973K,BeO 的 =1173K,Al2O3的 =923K。,图6.1 不

10、同温度下某些陶瓷材料的热容,图6.1是几种材料的热容-温度曲线。这些材料的D约为熔点(热力学温度)的0.2-0.5倍。对于绝大多数氧化物、碳化物,热容都是从低温时的一个低的数值增加到1273K左右的近似于24.9J/Kmol的数值。温度进一步增加,热容基本上没有什么变化。图中几条曲线不仅形状相似,而且数值也很接近。 无机材料的热容与材料结构的关系是不大的,如图6.2所示。CaO和SiO211的混合物与CaSiO3的热容-温度曲线基本重合。,固体材料CP与温度T的关系应由实验精确测定,大多数材料经验公式: 式中CP的单位为4.18 J/ (kmol),见表6.1。,图6.2摩尔比为1:1的不同形

11、式的CaO+SiO2的热容,表6.1 某些无机材料的热容-温度关系经验方程式系数,6.1.4相变对热容的影响,金属及合金在发生相变前后,伴随一定的热效应,这种热效应 构成了金属及合金热容的附加部分,使热容出现异常的变化。 根据热力学函数相变前后的变化,相变可分为一级相变和二级相变。,图6.3焓、自由能、熵、热容随温度变化示意图,6.1.4.1一级相变,热力学分析已经证明,发生一级相变时,除有体积突变 外,还伴随相变潜热的发生。由图6.3可见一级相变时热 力学函数变化的特点。具有这类相变有,纯金属的三相 转变,同素异构转变,共晶、包晶,固态的共析转变 等,举例金属熔化p220。,6.1.4.2二

12、级相变,这类转变转变大都发生在一个有限的温度范围,由图6.3b可见,发生二级时,热焓H随温度升高逐渐增加,但不像一级相变发生突变,其摩尔定压热容Cp.m在转变温度范围也有剧烈变化,但为有限值。转变的热效应相当图中阴影线所示的面积,可用内插法求得。属于这类转变的有磁性转变,bcc点阵的有序-无序转变及合金的超导转变。,42,63,84,21,0,500K,1000K,A2,A3,A4,A2,A3,A4,液态,图6.4铁加热时的热容转变,热分析方法,焓和热容是研究合金相变过程中重要的参数。研究焓和温度的关系,可以确定热容的变化和相变潜热。量热和热分析就是建立在热测量及温度测量基础上的。,现代常用的

13、热分析方法。在程序控制温度下,测量物质的物理性质与温度关系的一种技术。根据国际热分析协会(ICTA)的分类,热分析方法共分为九类十七种,见下表所列。由表可知,它们是把温度(或热)测量与其他物理性质测定结合起来的分析方法。,表6.2热分析方法的分类,6.1.5.2热分析的应用,建立合金相图 测定钢的转变曲线(奥氏体,马氏体的Ms点,TTT曲线,CCT曲线) 研究相的热稳定性 有序-无序转变 液晶相变的热分析研究 热分析在高聚物研究的应用,6.3 材料的热膨胀 概述 (意义:工程技术中的应用+科学研究中的重要方法),一, 材料膨胀性能的工业应用: 膨胀合金包括低膨胀合金、定膨胀合金。 低膨胀合金(

14、因瓦型合金(Invar alloy)的特点是,在温度变化时其长度变化很小,能保持尺寸的稳定性,故可用来制造标准量尺、精密天平、标准电容及标淮频率计的谐振腔等。 定膨胀合金的特点是,在规定的温度范围内具有一定的膨胀系数,主要用于和陶瓷、玻璃封接而构成电真空器件的结构材料,如大功率管的阴极、阳极引出线等。,软磁合金 永磁合金 弹性合金 膨胀合金 热双金属 电性合金 耐蚀合金 高温合金 难熔合金 钎焊合金,磁补偿合金: 具有改善磁性能受温度而引起的变化,以保证仪表的精确性。 主要成份:镍3740%,铬1214%,铁余量。,可伐合金,中国牌号为4J29等牌号,本合金含镍29%,钴18%的硬玻璃铁基封接

15、合金。该合金在20450范围内具有与硬玻璃相近的线膨胀系数和相应的硬玻璃能进行有效封接匹配,广泛用于汽车灯及电真空工业。中国牌号4J系列膨胀合金。(供线材与带材),产品名称:杜美丝芯合金(膨胀合金) 规格型号:4J43 执行标准:YB/T5236-93 包装:纸箱 20kg/箱 用途:用于生产杜美丝、制作电子管、灯炮及半导体器件与软玻璃匹配封接的引出线。,低膨胀合金的应用领域:,精密仪器仪表, 如:天文仪器构件、精密天平臂杆、标准量具、标准钟摆轮、摆杆。 低温容器, 如:液态天然气贮罐、液氢、液氧贮罐、液态天然气输送管道。 微波通讯, 如: 谐振腔、波导管、 标准频率发生器、 波长计。 可变电容, 如:可变电容 叶片、支撑杆、 温度补偿线。,热双金属片是由热膨胀系数差别很大的两种合金组成的,利用其在温度变化时弯曲的特点达到自动控制的目的。,热双金属片,热双金属片是由热膨胀系数差别很大的两种合金组成的,利用其在温度变

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > PPT模板库 > PPT素材/模板

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号