锂电池电极材料(共5篇)

上传人:bin****86 文档编号:60375959 上传时间:2018-11-15 格式:DOCX 页数:27 大小:31.36KB
返回 下载 相关 举报
锂电池电极材料(共5篇)_第1页
第1页 / 共27页
锂电池电极材料(共5篇)_第2页
第2页 / 共27页
锂电池电极材料(共5篇)_第3页
第3页 / 共27页
锂电池电极材料(共5篇)_第4页
第4页 / 共27页
锂电池电极材料(共5篇)_第5页
第5页 / 共27页
点击查看更多>>
资源描述

《锂电池电极材料(共5篇)》由会员分享,可在线阅读,更多相关《锂电池电极材料(共5篇)(27页珍藏版)》请在金锄头文库上搜索。

1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划锂电池电极材料(共5篇)锂电池正极材料综述1、引言锂离子电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的开发已经成为制约锂离子电池性能进一步提高、价格进一步降低的重要因素。在目前的商业化生产的锂离子电池中,正极材料的成本大约占整个电池成本的40左

2、右,正极材料价格的降低直接决定着锂离子电池价格的降低。对锂离子动力电池尤其如此。衡量锂离子电池正极材料的好坏,大致可以从以下几个方面进行评估:正极材料应有较高的氧化还原电位,从而使电池有较高的输出电压;锂离子能够在正极材料中大量的可逆地嵌入和脱嵌,以使电池有高的容量;在锂离子嵌入/脱嵌过程中,正极材料的结构应尽可能不发生变化或小发生变化,以保证电池良好的循环性能;正极的氧化还原电位在锂离子的嵌入/脱嵌过程中变化应尽可能小,使电池的电压不会发生显著变化,以保证电池平稳地充电和放电;正极材料应有较高的电导率,能使电池大电流地充电和放电;正极不与电解质等发生化学反应;锂离子在电极材料中应有较大的扩散

3、系数,便于电池快速充电和放电;价格便宜,对环境无污染。目前已批量应用于锂电池的正极材料主要有钴酸锂、镍酸锂、锰酸锂、钴镍锰酸锂以及磷酸铁锂。2、正极材料介绍LiCoO2钴酸锂:研究始于1980年,20世纪90年代开始进入市场。它属于-NaFeO2型层状岩盐结构,结构比较稳定,是一种非常成熟的正极材料产品,目前占据锂电池正极材料市场的主导地位。其理论容量为274mAh/g,实际容量为140mAh/g左右,也有报道实际容量已达155mAh/g。该正极材料的主要优点为:工作电压较高、充放电电压平稳,适合大电流充放电,比能量高、循环性能好,电导率高,生产工艺简单、容易制备等。主要(转载于:写论文网:)

4、缺点为:价格昂贵,抗过充电性较差,循环性能有待进一步提高。而且钴有放射性,不利于环保,因此发展受到限制。LiNiO2用于锂离子电池正极材料的LiNiO2具有与LiCoO2类似的层状结构。其理论能量密度达276mAh/g,但制作难度大,且安全性和稳定性不佳。技术上采用掺杂Co、Mn、Al、F等元素来提高其性能。由于提高镍酸锂技术研究需考察诸多参数,工作量大,目前的进展缓慢。工作电压范围为。该正极材料的主要优点为:自放电率低,无污染,与多种电解质有着良好的相容性,与LiCoO2相比价格便宜等。但LiNiO2具有致命的缺点:LiNiO2的制备条件非常苛刻,这给LiNiO2的商业化生产带来相当大的困难

5、;LiNiO2的热稳定性差,在同等条件下与LiCoO2和LiMn2O4正极材料相比,LiNiO2的热分解温度最低,且放热量最多,这对电池带来很大的安全隐患;LiNiO2在充放电过程中容易发生结构变化,使电池的循环性能变差。这些缺点使得LiNiO2作为锂离子电池的正极材料还有一段相当的路要走。用于锂离子电池正极材料的LiMn2O4具有尖晶石结构。其理论容量为148mAh/g,实际容量为90120mAh/g。工作电压范围为34V。该正极材料的主要优点为:锰资源丰富、价格便宜,安全性高,比较容易制备。缺点是理论容量不高;材料在电解质中会缓慢溶解,即与电解质的相容性不太好;在深度充放电的过程中,材料容

6、易发生晶格崎变,造成电池容量迅速衰减,特别是在较高温度下使用时更是如此。为了克服以上缺点,近年新发展起来了一种层状结构的三价锰氧化物LiMnO2。该正极材料的理论容量为286mAh/g,实际容量为已达200mAh/g左右。工作电压范围为3。虽然与尖晶石结构的LiMn2O4相比,LiMnO2在理论容量和实际容量两个方面都有较大幅度的提高,但仍然存在充放电过程中结构不稳定性问题。在充放电过程中晶体结构在层状结构与尖晶石结构之间反复变化,从而引起电极体积的反复膨胀和收缩,导致电池循环性能变坏。而且LiMnO2也存在较高工作温度下的溶解问题。解决这些问题的办法是对LiMnO2进行掺杂和表面修饰。目前已

7、经取得可喜进展。该材料具有橄榄石晶体结构,是近年来研究的热门锂离子电池正极材料之一。其理论容量为170mAh/g,在没有掺杂改性时其实际容量已高达110mAh/g。通过对LiFePO4进行表面修饰,其实际容量可高达165mAh/g,已经非常接近理论容量。工作电压范围为左右。与以上介绍的正极材料相比,LiFePO4具有高稳定性、更安全可靠、更环保并且价格低廉。此外,它在大电流放电率放电、放电电压平稳性、安全性、寿命长等方面都比其它几类材料好,是最被看好的电流输出动力电池。目前A123公司已能将磷酸铁锂正极材料制造成均匀的纳米级超小颗粒,使颗粒和总表面积剧增,进一步体高了磷酸铁锂电池的放电功率和稳

8、定性。基于以上原因,LiFePO4在大型锂离子电池方面有非常好的应用前景。但要在整个锂离子电池领域显示出强大的市场竞争力,LiFePO4却面临以下不利因素:来自LiMn2O4、LiMnO2、LiNiMO2正极材料的低成本竞争;在不同的应用领域人们可能会优先选择更适合的特定电池材料;LiFePO4的电池容量不高;在高技术领域人们更关注的可能不是成本而是性能,如应用于手机与笔记本电脑;LiFePO4急需提高其在1C速度下深度放电时的导电能力,以此提高其比容量。在安全性方面,LiCoO2代表着目前工业界的安全标准,而且LiNiO2的安全性也已经有了大幅度的提高,只有LiFePO4表现出更高的安全性能

9、,尤其是在电动汽车等方面的应用,才能保证其在安全方面的充分竞争优势。钴镍锰酸锂即现在常说的三元材料,它融合了钴酸锂和锰酸锂的优点,在小型低功率电池和大功率动力电池上都有应用。但该种电池的材料之一钴是一种贵金属,价格波动大,对钴酸锂的价格影响较大。钴处于价格高位时,三元材料价格较钴酸锂低,具有较强的市场竞争力;但钴处于价格低位时,三元材料相较于钴酸锂的优势就大大减小。随着性能更加优异的磷酸铁锂的技术开发,三元材料大多被认为是磷酸铁锂未大规模生产前的过渡材料。锂电池关键电极材料技术简介熊志高XX,金属0901,材料科学与工程学院摘要:电池种类繁多,本文中主要讨论二次电池的相关内容。本文搜集传统电池

10、和锂电池的特性,通过二者的对比,简叙锂电池取代传统电池的原因。本文介绍锂电池的分类以及锂电池的工作原理,其中重点介绍锂电池电极材料的关键技术。电极材料种类多,但目前已经成熟应用的电极材料是LiCoO2,石墨。其他电极材料由于性能研究还未成熟,所以尚未投入实际生产应用。关键词:电极材料、锂离子电池、充电、碳材料。【1】传统二次电池与锂离子二次电池的比较所谓二次电池就是能反复充电放电循环使用的电池。这里简单介绍传统二次电池是铅酸电池和镍镉电池。铅酸电池具有电动势大,操作温度广、结构简单、技术成熟,使用可靠等优点,是目前电动汽车常用电池,但比容仅为35WhKg-1,循环寿命约400次。镍镉电池比能可

11、达到55Whkg-1,比功率200Wkg-1,循环寿命到XX次,但镉对环境污染,应用受到限制。锂离子电池高能量密度:锂离子电池的重量是相同容量的镍镉或镍氢电池的一半,体积是镍镉的40-50%,镍氢的20-30%。高电压:一个锂离子电池单体的工作电压为(平均值)。无污染:锂离子电池不含有诸如镉、铅、汞之类的有害金属物质。不含金属锂:锂离子电池不含金属锂,因而不受飞机运输关于禁止在客机携带锂电池等规定的限制。循环寿命高:在正常条件下,锂离子电池的充放电周期可超过500次。无记忆效应:记忆效应是指镍镉电池在充放电循环过程中,电池的容量减少的现象。锂离子电池不存在这种效应。快速充电:使用额定电压为的恒

12、流恒压充电器可以使锂离子电池在一至两个小时内得到满充。【2】锂离子二次电池工作原理这里以石墨为负极,以LiCoO2为正极,如图:电极反应如下。正极上发生的反应为LiCoO2=充电=Li1-xCoO2+XLi+Xe(电子)负极上发生的反应为6C+XLi+Xe=LixC6电池总反应:LiCoO?+6C=Li1-xCoO?+LixC6在正极中,锂离子和钴离子各自位于立方紧密堆积氧层交替的八面体位置。充电时锂离子从八面体位置发生脱嵌,释放一个电子,Co氧化为Co;放电时,锂离子嵌入到八面体位置,得到一个电子,Co4+还原为Co3+。二在负极中,当里插入到石墨当中后,石墨结构与此同时得到一个电子。电子位

13、于石墨的墨片分子平面上,与锂离子之间发生一定的静电作用,因此锂的实际大小比在正极中要大。【3】锂离子电池电极材料一正极材料作为正极材料的嵌锂化合物是锂离子电池中锂离子的“贮存库”。为了获得较高的单体电池电压,倾向于选择高电势的嵌锂化合物。一般而言,正极材料应满足:在所要求的充放电电位范围内,具有与电解质溶液的电化学相容性;温和的电极过程动力学;高度可逆性;全锂化状态下在空气中的稳定性。目前研究的热点主要集中在层状LiMO2和尖晶石型LiM2O4结构的化合物上(M=Co、Ni、Mn、V等过渡金属离子)。1.层状LiMO2化合物理想的层状LiMO2结构属三方晶系,离子以稍微扭曲的立方紧密堆积排列(

14、图1),M原子处于涂成阴影的八面体层,而Li原子处于无阴影的八面体层。这类层状化合物作为锂离子电池的正极材料,关键是在Li+离子的脱嵌与嵌入过程中结构变化的程度和可逆性。(1)LiCoO2最早用于商品化的锂离子电池中的正极为LiCoO2,用Li2CO3与CoCO3等钴盐混合在900烧制而成,但其容量较低,循环性能较差。Yoshio等用钴的有机酸络合物作为原料制备的LiCoO2,由于原料的混合是在分子水平上进行,可逆容量为132mAhg-1,循环性能也得到改善。该化合物制备相对简单,有高达的工作电压,在充放电过程中,Li1-xCoO2发生从三方晶系到单斜晶系的可逆相变,但这种变化只伴随很少的晶胞

15、参数变化,故有良好的可逆性。但是Li1-xCoO2的容量一般被限制于125mAhg-1,否则,过充电将导致不可逆容量损失和极化电压增大且其价格高,有毒、因此,随着价廉而性能优异的正极材料研究的深入,LiCoO2的使用量将逐渐减少。(2)LiVO2钒的价格较钴低,亦能形成层状化合物,但与LiCoO2不同。当Li+离子脱嵌时,层状的LiVO2变得不稳定,在Li1-xVO2中,当x时,由于Co的含量降低,容量降低。当然,如果提高充电的终止电压到4.52V,容量可达160mAh/g。但是过量的锂并没有将CO3+还原,而是产生了新价态的氧离子,其结合能高,周围电子密度小,而且空穴结构均匀分布在Co层和O层,提高CoO的键合强度。然而也有不同的报道。例如x=、和,放电容量基本上都为140mAh/g,而容量衰减归结于x增加时,锂存在于八面体位置。镁离子的掺杂对锂的可逆嵌人容量影响不大,而且也表现良好的循环性能,这主要是镁接杂后形成的是固溶体,而不是多相结构。镁的掺杂量达到在x=0.2(LiCo1-xMgxO2B)时还保持为均一的固溶体。通过LiMAS-NMR联用的方法,观察到镁掺杂后的相结构存在缺陷:氧空位和中间相Co3+。当充电到时,容量大于160mAh/g,循环性能依然理想。主要原因可能在于:镁的离子半径与锂的离子半径差不多,掺杂后

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 总结/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号