半导体器件知识

上传人:ji****n 文档编号:58053136 上传时间:2018-10-26 格式:PPT 页数:53 大小:904.50KB
返回 下载 相关 举报
半导体器件知识_第1页
第1页 / 共53页
半导体器件知识_第2页
第2页 / 共53页
半导体器件知识_第3页
第3页 / 共53页
半导体器件知识_第4页
第4页 / 共53页
半导体器件知识_第5页
第5页 / 共53页
点击查看更多>>
资源描述

《半导体器件知识》由会员分享,可在线阅读,更多相关《半导体器件知识(53页珍藏版)》请在金锄头文库上搜索。

1、半导体器件基础,1.1 半导体的基本知识,1.2 半导体二极管,1.3 半导体三极管,1.4 BJT模型,1.5 场效应管,1.1 半导体的基本知识,在物理学中,根据材料的导电能力,可以将他们划分导体、绝缘体和半导体。 典型的半导体是硅Si和锗Ge,它们都是4价元素。,硅原子,锗原子,硅和锗最外层轨道上的四个电子称为价电子。,本征半导体的共价键结构,束缚电子,在绝对温度T=0K时,所有的价电子都被共价键紧紧束缚在共价键中,不会成为自由电子,因此本征半导体的导电能力很弱,接近绝缘体。,一. 本征半导体,本征半导体化学成分纯净的半导体晶体。 制造半导体器件的半导体材料的纯度要达到99.999999

2、9%,常称为“九个9”。,这一现象称为本征激发,也称热激发。,当温度升高或受到光的照射时,束缚电子能量增高,有的电子可以挣脱原子核的束缚,而参与导电,成为自由电子。,自由电子,空穴,自由电子产生的同时,在其原来的共价键中就出现了一个空位,称为空穴。,可见本征激发同时产生电子空穴对。 外加能量越高(温度越高),产生的电子空穴对越多。,与本征激发相反的现象复合,在一定温度下,本征激发和复合同时进行,达到动态平衡。电子空穴对的浓度一定。,常温300K时:,电子空穴对,自由电子 带负电荷 电子流,总电流,空穴 带正电荷 空穴流,本征半导体的导电性取决于外加能量: 温度变化,导电性变化;光照变化,导电性

3、变化。,导电机制,二. 杂质半导体,在本征半导体中掺入某些微量杂质元素后的半导体称为杂质半导体。,1. N型半导体,在本征半导体中掺入五价杂质元素,例如磷,砷等,称为N型半导体。 N为negative(负)的字头。,N型半导体,多余电子,磷原子,硅原子,多数载流子自由电子,少数载流子 空穴,施主原子,自由电子,电子空穴对,在本征半导体中掺入三价杂质元素,如硼、镓等。 P为positive(正)的字头。,空穴,硼原子,硅原子,多数载流子 空穴,少数载流子自由电子,受主原子,空穴,电子空穴对,2. P型半导体,杂质半导体的示意图,多子电子,少子空穴,多子空穴,少子电子,少子浓度与温度有关,多子浓度

4、与温度无关,因多子浓度差,形成内电场,多子的扩散,空间电荷区,阻止多子扩散,促使少子漂移。,PN结合,空间电荷区,多子扩散电流,少子漂移电流,耗尽层,三. PN结及其单向导电性,1 . PN结的形成,动态平衡:,扩散电流 漂移电流,总电流0,2. PN结的单向导电性,(1) 加正向电压(正偏)电源正极接P区,负极接N区,外电场的方向与内电场方向相反。 外电场削弱内电场,耗尽层变窄,扩散运动漂移运动,多子扩散形成正向电流I F,(2) 加反向电压电源正极接N区,负极接P区,外电场的方向与内电场方向相同。 外电场加强内电场,耗尽层变宽,漂移运动扩散运动,少子漂移形成反向电流I R,在一定的温度下,

5、由本征激发产生的少子浓度是一定的,故IR基本上与外加反压的大小无关,所以称为反向饱和电流。但IR与温度有关。,PN结加正向电压时,具有较大的正向扩散电流,呈现低电阻, PN结导通; PN结加反向电压时,具有很小的反向漂移电流,呈现高电阻, PN结截止。 由此可以得出结论:PN结具有单向导电性。,16,PN结的伏安特性,正向导通区,反向截止区,反向击穿区,K:波耳兹曼常数 T:热力学温度 q: 电子电荷,1.2 半导体二极管,二极管 = PN结 + 管壳 + 引线,结构,符号,二极管按结构分三大类:,(1) 点接触型二极管,PN结面积小,结电容小, 用于检波和变频等高频电路。,(3) 平面型二极

6、管,用于集成电路制造工艺中。 PN 结面积可大可小,用 于高频整流和开关电路中。,(2) 面接触型二极管,PN结面积大,用 于工频大电流整流电路。,半导体二极管的型号,国家标准对半导体器件型号的命名举例如下:,2AP9,一 、半导体二极管的伏安特性曲线,硅:0.5 V 锗: 0.1 V,(1) 正向特性,导通压降,(2) 反向特性,死区 电压,实验曲线,硅:0.7 V 锗:0.3V,二. 二极管的模型及近似分析计算,例:,二极管的模型,串联电压源模型,U D 二极管的导通压降。硅管 0.7V;锗管 0.3V。,理想二极管模型,正偏,反偏,二极管的近似分析计算,例:,串联电压源模型,测量值 9.

7、32mA,相对误差,理想二极管模型,相对误差,0.7V,三. 二极管的主要参数,(1) 最大整流电流IF,二极管长期连续工 作时,允许通过二 极管的最大整流 电流的平均值。,(2) 反向击穿电压UBR,二极管反向电流 急剧增加时对应的反向 电压值称为反向击穿 电压UBR。,(3) 反向电流IR,在室温下,在规定的反向电压下的反向电流值。硅二极管的反向电流一般在纳安(nA)级;锗二极管在微安(A)级。,当稳压二极管工作在反向击穿状态下,工作电流IZ在Izmax和Izmin之间变化时,其两端电压近似为常数,稳定电压,四、稳压二极管,稳压二极管是应用在反向击穿区的特殊二极管,正向同二极管,反偏电压U

8、Z 反向击穿, UZ ,1.3 半导体三极管,半导体三极管,也叫晶体三极管。由于工作时,多数载流子和少数载流子都参与运行,因此,还被称为双极型晶体管(Bipolar Junction Transistor,简称BJT)。 BJT是由两个PN结组成的。,NPN型,PNP型,符号:,29,三极管的结构特点: (1)发射区的掺杂浓度集电区掺杂浓度。 (2)基区要制造得很薄且浓度很低。,一.BJT的结构,二 BJT的内部工作原理(NPN管),三极管在工作时要加上适当的直流偏置电压。,若在放大工作状态: 发射结正偏:,+ UCE , UBE , UCB ,集电结反偏:,由VBB保证,由VCC、 VBB保

9、证,UCB=UCE - UBE, 0,31,1).发射结加正向电压,扩散运动形成发射极电流IE 2)扩散到基区的自由电子与空穴的复合运动形成基极电流IB 3)集电结加反向电压,漂移运动形成集电极电流IC,1BJT内部的载流子传输过程,2电流分配关系,三个电极上的电流关系:,IE =IC+IB,定义:,(1)IC与I E之间的关系:,其值的大小约为0.90.99。,IE IC,(2)IC与I B之间的关系:,得:,令:,三. BJT的特性曲线(共发射极接法),(1) 输入特性曲线 iB=f(uBE) uCE=const,(1)uCE=0V时,相当于两个PN结并联。,(3)uCE 1V再增加时,曲

10、线右移很不明显。,(2)当uCE=1V时, 集电结已进入反偏状态,开始收集电子,所以基区复合减少, 在同一uBE 电压下,iB 减小。特性曲线将向右稍微移动一些。,(2)输出特性曲线 iC=f(uCE) iB=const,现以iB=60uA一条加以说明。,(1)当uCE=0 V时,因集电极无收集作用,iC=0。,(2) uCE Ic 。,(3) 当uCE 1V后,收集电子的能力足够强。这时,发射到基区的电子都被集电极收集,形成iC。所以uCE再增加,iC基本保持不变。,同理,可作出iB=其他值的曲线。,输出特性曲线可以分为三个区域:,饱和区iC受uCE显著控制的区域,该区域内uCE0.7 V。

11、 此时发射结正偏,集电结也正偏。,截止区iC接近零的区域,相当iB=0的曲线的下方。 此时,发射结反偏,集电结反偏。,放大区 曲线基本平行等 距。 此时,发 射结正偏,集电 结反偏。 该区中有:,饱和区,放大区,截止区,1.4 三极管的模型及分析方法,UD=0.7V,UCES=0.3V,iB0 iC0,一. BJT的模型,直流模型,半导体三极管的型号,第二位:A锗PNP管、B锗NPN管、 C硅PNP管、D硅NPN管,第三位:X低频小功率管、D低频大功率管、 G高频小功率管、A高频大功率管、K开关管,国家标准对半导体器件型号的命名举例如下:,3DG110B,1.5 场效应管,BJT是一种电流控制

12、元件(iB iC),工作时,多数载流子和少数载流子都参与运行,所以被称为双极型器件。,场效应管(Field Effect Transistor简称FET)是一种电压控制器件(uGS iD) ,工作时,只有一种载流子参与导电,因此它是单极型器件。 FET因其制造工艺简单,功耗小,温度特性好,输入电阻极高等优点,得到了广泛应用。,41,1.5.2 绝缘栅场效应管:,一、结构和电路符号,P型基底,两个N区,SiO2绝缘层,导电沟道,金属铝,N沟道增强型,分为: 增强型 N沟道、P沟道 耗尽型 N沟道、P沟道,42,N 沟道耗尽型,预埋了导电沟道,43,P 沟道增强型,44,P 沟道耗尽型,预埋了导电

13、沟道,一. 绝缘栅场效应三极管,1.N沟道增强型MOS管 (1)结构 4个电极:漏极D, 源极S,栅极G和 衬底B。,符号:,当uGS0V时纵向电场 将靠近栅极下方的空穴向下排斥耗尽层。,(2)工作原理,当uGS=0V时,漏源之间相当两个背靠背的 二极管,在d、s之间加上电压也不会形成电流,即管子截止。,再增加uGS纵向电场 将P区少子电子聚集到 P区表面形成导电沟道,如果此时加有漏源电压,就可以形成漏极电流id。,栅源电压uGS的控制作用,定义: 开启电压( UT)刚刚产生沟道所需的 栅源电压UGS。,N沟道增强型MOS管的基本特性: uGS UT,管子截止, uGS UT,管子导通。 uG

14、S 越大,沟道越宽,在相同的漏源电压uDS作用下,漏极电流ID越大。,漏源电压uDS对漏极电流id的控制作用,当uGSUT,且固定为某一值时,来分析漏源电 压VDS对漏极电流ID的影响。(设UT=2V, uGS=4V),(a)uds=0时, id=0。,(b)uds id; 同时沟道靠漏区变窄。,(c)当uds增加到使ugd=UT时, 沟道靠漏区夹断,称为预夹断。,(d)uds再增加,预夹断区 加长, uds增加的部分基本降落在随之加长的夹断沟道上, id基本不变。,(3)特性曲线,四个区: (a)可变电阻区(预夹断前)。,输出特性曲线:iD=f(uDS)uGS=const,(b)恒流区也称饱

15、和 区(预夹断 后)。,(c)夹断区(截止区)。,(d)击穿区。,可变电阻区,恒流区,截止区,击穿区,转移特性曲线: iD=f(uGS)uDS=const,可根据输出特性曲线作出转移特性曲线。 例:作uDS=10V的一条转移特性曲线:,UT,4. MOS管的主要参数,(1)开启电压UT (2)夹断电压UP (3)跨导gm :gm=iD/uGS uDS=const (4)直流输入电阻RGS 栅源间的等效电阻。由于MOS管栅源间有sio2绝缘层,输入电阻可达1091015。,本章小结,1半导体材料中有两种载流子:电子和空穴。电子带负电,空穴带正电。在纯净半导体中掺入不同的杂质,可以得到N型半导体和

16、P型半导体。 2采用一定的工艺措施,使P型和N型半导体结合在一起,就形成了PN结。PN结的基本特点是单向导电性。 3二极管是由一个PN结构成的。其特性可以用伏安特性和一系列参数来描述。在研究二极管电路时,可根据不同情况,使用不同的二极管模型。,53,4BJT是由两个PN结构成的。工作时,有两种载流子参与导电,称为双极性晶体管。BJT是一种电流控制电流型的器件,改变基极电流就可以控制集电极电流。BJT的特性可用输入特性曲线和输出特性曲线来描述。其性能可以用一系列参数来表征。BJT有三个工作区:饱和区、放大器和截止区。 6FET分为JFET和MOSFET两种。工作时只有一种载流子参与导电,因此称为单极性晶体管。FET是一种电压控制电流型器件。改变其栅源电压就可以改变其漏极电流。FET的特性可用转移特性曲线和输出特性曲线来描述。其性能可以用一系列参数来表征。,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号