材料科学基础 3-1点缺陷&3-2

上传人:ji****72 文档编号:48521056 上传时间:2018-07-16 格式:PPT 页数:54 大小:712.50KB
返回 下载 相关 举报
材料科学基础 3-1点缺陷&3-2_第1页
第1页 / 共54页
材料科学基础 3-1点缺陷&3-2_第2页
第2页 / 共54页
材料科学基础 3-1点缺陷&3-2_第3页
第3页 / 共54页
材料科学基础 3-1点缺陷&3-2_第4页
第4页 / 共54页
材料科学基础 3-1点缺陷&3-2_第5页
第5页 / 共54页
点击查看更多>>
资源描述

《材料科学基础 3-1点缺陷&3-2》由会员分享,可在线阅读,更多相关《材料科学基础 3-1点缺陷&3-2(54页珍藏版)》请在金锄头文库上搜索。

1、概 述晶体缺陷点缺陷线缺陷:位错面缺陷空位 间隙原子与杂质原子刃型: 螺型: 混合型:界面表面堆垛层错晶界 亚晶界 孪晶界 相界bt bt t返回下页b前边讨论的大都是理想的晶体结构 ,在理想的晶体结构中,所有的原子都 处于规则的晶体学位置上,也就是平衡 位置上。但人们很早就发现在实际晶体 中,并不是那麽完整无缺的,原子的排 列不可能绝对规则和完整,总是存在着 偏离完整性的区域,对此称为晶体缺陷 。根据晶体缺陷的几何形态特征,一般 将它分为三类:点缺陷、线缺陷和面缺 陷。后退下页(1)点缺陷 它在三维空间各方向 上尺寸都很小,亦称为零维缺陷,如 空位间隙原子和异类原子等。(2)线缺陷 亦称一维

2、缺陷,在两 个方向上尺寸很小,主要是位错。(3)面缺陷 在空间一个方向上尺 寸很小,另外两个方向上尺寸较大的 缺陷,如晶界、相界等。后退下页返回第一节 点缺陷一点缺陷类型 空位,间隙原子:肖脱基空位及间隙原子、弗兰克缺陷(图) 空位及间隙原子在热力学上是平衡浓度为: 下页上页二、点缺陷的产生1、平衡点缺陷及其浓度点缺陷的类型其中Ce为某一种类型点缺陷的平衡浓度 ,N为晶体的原子总数,A为材料常数 ,T热力学温度,k玻尔兹蔓常数, u该类型缺陷的形成能。熵值的增加随缺陷数量的变化是非 线性的,(如图4-3)所示少量点缺陷 的存在使熵增快速增加,继续增加点缺 陷使熵增变化逐渐变缓。U和S这两 项相

3、反作用的结果使自由能变化A下页上页的走向如图4-3的中间曲线所示,先 随晶体中缺陷数目的增多,自由能逐 渐降低,然后又逐渐增高,这样体系 中在一定温度下存在着一个平衡的点 缺陷浓度,在该浓度下体系的自由能 最低。也就是说由热振动产生的点缺 陷属于热力学平衡缺陷,晶体中存在 这些缺陷使自由能是降低的;相反, 如果没有这些却陷,自由能反而升高 。下页上页返回Cu晶体的空位形成能uv=0.9ev/atom或 1.44*10-19J/atom材料常数A取作1,k=1.38*10-23. 计算: 1)在下,每立方米中的空位数目;2) 下的平衡空位浓度 。例题解:首先确定1m3体积内原子Cu原子总数(已知

4、Cu的摩尔质量MCu=63.54g/mol,500 下Cu的密度为.96*106g/m3). 下页上页1)将N代入,计算空位数目ne下页上页2)计算空位浓度即在C时,每106个原子中才有.个空位。下页上页2、过饱和点缺陷的产生 有时晶体中点缺陷的数目会明显超过平 衡值,这些点缺陷称为过饱和点缺陷。 产生过饱和点缺陷的原因有高温淬火、 辐照、冷加工等。 三、点缺陷及材料行为空位和间隙原子的运动是晶体内原 子扩散的内部原因,原子(或分子)的 扩散就是靠点缺陷的运动而实现的。材 料加工工艺中不少过程都是以扩散作为 基础的,如改变表面下页上页下页上页成分的化学热处理、成分均匀化处理, 退火与正火、时效

5、硬化处理、表面氧化 及烧结等过程无一不与原子的扩散相联 系,如果晶体中没有缺陷,这些工艺将 无法进行。点缺陷还可以造成金属物理性能 与力学性能的变化。引起电阻的增加,晶体中存在点缺陷 。时破坏了原子排列的规律性,使电子在传导 时的散射增加,从而增加了电阻。 空位的存在使晶体的密度下降,体积膨胀 。 空位的存在及其运动是晶体高温下发生蠕 变的重要原因之一。 高温快速冷却时保留的空位,或经辐照处 理后空位,这些过量空位往往沿一些晶面聚 集,形成空位片,或它们与其他晶体缺陷发 生交互作用,因而使材料强度有所提高,但 同时也引起显著的脆性。下页上页返回第二节 位错的基本概念一位错概念的引入 1926年

6、 Frank计算了理论剪切强度,与实际剪切强度相比,相差个数量级,当时无法解释,此矛盾持续了很长时间 。1934年 Taylor在晶体中引入位错概念,将位错与晶体结构、晶体的滑移联系起来解释了这种差异 。下页上页1947年 Cottrell发表了溶质原子与位错间交互作用的研究报告 。1950年 Frank and Reed同时提出了位错萌生机制。 1957年 公布了世界上第一张位错照片。 今天,位错理论已经成为塑性变形及强化的理论基础 1939年 Burgers提出柏氏矢量b以表征位错的特征,阐述了位错弹性应力场理论。下页上页二位错类型 刃型位错原子模型 刃型位错的局部滑移晶体的局部滑移螺型位

7、错的原子组态晶体的局部滑移混合型位错的原子组态bb刃型位错混合型位错:螺型位错下页上页b螺型位错与刃型位错的区别(1)螺型位错中不存在多余半原子面, 而是垂直于位错线的原子平面发生了螺 旋状的扭曲。 (2)螺位错线的b与其位错线相平行, 而刃位错线的b与其位错线相互垂直,这 是区别螺位错与刃位的主要依据。 (3)螺型位错可分为左螺型位错和右螺 型位错,与正负刃位错不同,左右螺型 位错是不能相互转化的,不管从哪个。 下页上页(4)螺位错与刃位错的滑移运动有一个 重要的差别,即刃位错有确定的滑移面 (1)它们都是线缺陷;(2)它们都可以在外力的作用下发生滑 移运动,而且运动的结果都是在位错线 滑移

8、过的区域之中,造成了上下两半晶刃型位错、螺型位错和混合位错在本质 上的共同点:方向看,旋转的方向是不会变的。下页上页据位错模型不难看出,晶体中有 了位错,滑移就十分容易进行。由于 位错处原子能量高,不太稳定,因此 在切应力作用下原子很容易位移,把 位错推进一个原子距离。(图4-12)位错的易动性下页上页晶体整体相对位移过一个b的距离,这 一点是非常重要的。下页上页位错就是按照这一方式逐渐前进 ,最终便离开了晶体,此时左侧表面 形成了一个原子间距大小的台阶,同 时在位错移动过的区域内,晶体的上 部相对于下部也位移了一个原子间距 。当很多位错移出晶体时,会在晶体 表面产生宏观可见的台阶,使晶体发

9、生塑性应变。显然按位错滑移的方式 塑变要比两个相邻原子面整体相对运 动容易得多,因此晶体的实际强度比 理论强度低得多。后退 下页三柏氏矢量 位错是b不为零的晶体缺陷,在完全晶体中做与含缺陷的晶体封闭回路相同的回路,终点指向始点的矢量即为b(柏氏回路)。 柏氏矢量确定方法:图4-14后退 下页柏氏矢量的物理意义一般认为它代表着位错中心晶格畸 变的总和,这种表述有一定的道理,但 比较含混且不易理解。其实把柏氏矢量 的物理意义理解为该位错线运动后能够 在晶体中引起相对位移量,这种表述十 分明确,而且更能反映位错的本质问题 ,因为位错存在的意义不仅限于它是一 种晶体缺陷引起了晶格的局部畸变,更 重要的

10、是它的运动会引起晶体的宏观形 变。后退 下页(1)一条位错线可以是弯曲的任意形 状,因为位错线的各个部分可以是不 同性质的位错,但是它们的柏氏矢量 缺顶只有一个,处处相同。(2)如果有几条位错线相交于一点, 如果把所有位错线的方向都设定为指 向交点(或相反),则每条位错线的b 矢量之和为零。柏氏矢量是一个十分重要的概念:下页上页柏氏矢量表示方法一般表达式:uvwnab =222wvunab+=模(即位错强度):位错是柏氏矢量不为零的晶体缺陷下页上页大拇指多余半原子面b正方向位错线方向食指中指注:b矢量有大小,是一个原子间距, 也有方向,它的方向与所选定的位错线 的方向有关,一旦位错线的方向规定

11、以 后,b矢量的方向不能任意。可用右手 定则:下页上页四位错的运动 思路:位错运动相当于位错的有力的结果,运用虚 功原理,可得到作用于单位位错长度上的作用力的 大小和方向 。作用在位错上的力位错运动刃型位错 螺型位错滑移 攀移滑移交滑移大小:方向: bF=ttF下页上页1、位错的滑移位错的滑移是在切应力下进行的,只 有当滑移面上的切应力分量达到一定值后 位错才能滑移。刃、螺位错滑移特征的不 同之处在于: (1)开动位错运动的切应力方向不同, 使刃型位错运动的切应力方向必须与位错 线垂直;而使螺型位错运动的切应力方向 却是与螺型位错平行的。 (2)位错运动方向与晶体滑移方向之间 的关系不同,不论

12、是刃型后退 下页或螺型,它们的运动方向总是与位错线 垂直的,而位错通过后,晶体所产生的 滑移方向就不同了,对于刃位错,晶体 的滑移方向与位错运动方向是一致的, 而螺位错引起的晶体滑移方向与位错运 动方向垂直。位错环的滑移特征,如图4-20,位错 在滑移面上自行封闭形成位错环,位错 环的柏氏矢量正好处于滑移面上,所以 可以理解为下页上页滑移面上圆形区域内沿着柏氏矢量方向局部滑移,位 错环就是滑移区与未滑移区的边界。后退 下页2、位错的攀移只有刃位错才能发生攀移运动,螺型位 错是不会攀移的。攀移的本质是刃型位 错的半原子面向上或向下移动,于是位 错线也就跟着向上或向下运动,因此攀 移时位错线的运动

13、方向正好与柏氏矢量 垂直。攀移是通过原子的扩散来实现的。 攀移是位错线并不是同步向上或向下运下页上页攀移是位错线并不是同步向上或向 下运动,因此攀移时位错线的运动 方向正好与柏氏矢量垂直。攀移是通过原子的扩散来实现 的。攀移是位错线并不是同步向上 或向下运动,而是原子逐个的加入 , 所以攀移时位错线上带有很多台阶 称为割阶。下页上页下页上页刃型位错的运动一、滑移运动(1)使刃位错线产生滑移运动的力是作 用在滑移面上且平行于b的切应力,滑移 面由位错线和b确定;(2)在上述切应力作用下,位错线在滑滑移面上向着垂直于位错线的方向运动 ,位错线的方向于外切应力平行,但在 同一切应力作用下,正负刃位错

14、的运动 方向相反; (3)刃位错运动的结果使位错线扫过 区上下两半晶体产生一其值为b的相对 位移,位移的方向完全取决于外切应力 ,位移方向与位错线方向平行,也与b 方向平行,但不能单纯由位错线的运动 方下页上页方向或b的方向来确定晶体的相对运动方 向。二、攀移运动刃型位错线在垂直于滑移面的方向上的 运动称为攀移运动。(1)攀移运动一定伴随着原子的扩散, 从位错多余半原子面扩散出去的原子, 可能成为间隙原子,或跃入空位,因此下页上页可以说正攀移将使晶体中的空位浓度降 低,负攀移则会使空位浓度增大。(2)刃位错的攀移运动是比较难于进行 的,只有在高温下,原子扩散能力很强 ,或空位浓度很大的情况下,

15、攀移运动 才是可能的。外加应力可以促进刃位错 的攀移运动,压应力有利于正攀移,拉 应力有利于负攀移。下页上页滑移面上向着垂直于位错线的方向运动 ,位错线的方向于外切应力平行,但在 同一切应力作用下,正负刃位错的运动 方向相反; (3)刃位错运动的结果使位错线扫过 区上下两半晶体产生一其值为b的相对 位移,位移的方向完全取决于外切应力 ,位移方向与位错线方向平行,也与b 方向平行,但不能单纯由位错线的运动 方下页上页(3)对攀移运动起作用的是正应力, 而且是垂直作用在多余半原面上的正应 力分量,或着说平行于b的正应力分量 。(4)刃位错的攀移运动同样会引起晶 体的宏观变形,因为位错线正攀移所经

16、过的区域中,少了一排原子,则整个晶 体将缩短一个原子层(一个b),而负 攀移使晶体中多出一排原子,则整个晶 体将伸长一个b。下页上页螺型位错线的运动一、滑移运动 (1)引起螺位错滑移运动的力是平行 于b的切应力,位错线的滑移面不能由 位错线和b来确定,因位b和位错线是平 行的。 (2)位错线的运动方向依然是在滑移 面上垂直于位错线的方向。下页上页(3)位错线运动的结果使位错线扫过 区上下两半晶体产生其值为B的相对位移,位移的方向完全取决于 外切应力方向,位移方向与位错线的 运动方向垂直,但与b平行。二、交滑移如果由于某种原因,螺位错在某一平面 上的滑移运动受阻,那麽只要应力条件下页上页具备,它可以绕过障碍向另一个滑移面 上继续滑移,称为交滑移。螺位错交滑 移时,滑移面改变了,但b矢量不变。混合位错的运动对于混合位错,在切应力作用下 ,位错运动的方向也是处垂直于位错 线。处 下页上页类类型柏氏向量 位错线错线 运动动方向晶体滑

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号