模式识别作业-小论文

上传人:飞*** 文档编号:47152246 上传时间:2018-06-30 格式:PDF 页数:6 大小:156.28KB
返回 下载 相关 举报
模式识别作业-小论文_第1页
第1页 / 共6页
模式识别作业-小论文_第2页
第2页 / 共6页
模式识别作业-小论文_第3页
第3页 / 共6页
模式识别作业-小论文_第4页
第4页 / 共6页
模式识别作业-小论文_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《模式识别作业-小论文》由会员分享,可在线阅读,更多相关《模式识别作业-小论文(6页珍藏版)》请在金锄头文库上搜索。

1、1 模式识别学习心得模式识别 (Pattern Recognition) 技术也许是最具有挑战性的一门技术了,模式 识别有时又被称为分类技术, 因为模式识别说到底就是对数据进行分类。说到识 别,最为常用的便是模仿人的视觉的图像识别(当然还有语音识别) ,也许你会 想当然地认为那还不简单, 觉得我们用我们的眼睛可以轻而易举地识别出各种事 物,但是当你想用计算机中的程序来实现它时,于是你便会觉得很沮丧, 甚至于 有无从下手的感觉, 至此你再也不会觉得电脑有多聪明,你会觉得电脑是多么的 低能。是的,现在的电脑智能, 即人工智能还远不如蟑螂的智能,这其中最为根 本的原因是模式识别技术还是处于较为低层次

2、的发展阶段,很多的识别技术还无 法突破,甚至有人还断言,再过30 年也不会有本质的飞跃。当然,世事总是让 人难以预料, 我们也用不着这么地悲观, 科学技术总是向前发展的, 没有人可以 阻档得了的。 在这里,我把我对模式识别技术的学习和研究心得拿出来与大家分 享一下。模式识别具有较长的历史, 在 20 世纪 60 年代以前,模式识别主要是限于统 计学领域中的理论研究,还无法有较强的数学理论支持,20 世纪 80 年代神经网 络等识别技术得到了突破, 计算机硬件技术更是有了长足的发展,模式识别技术 便得到了较为广泛的应用, 光学字符识别 (OCR)是模式识别技术最早得到成功应 用的技术,之后的应用

3、还有如DNA 序列分析、化学气味识别、图像理解力、人 脸检测、表情识别、手势识别、语音识别、图像信息检索、数据挖掘等。模式识别是一门与数学结合非常紧密的科学,所应用到的数学知识非常多, 最基本的便是概率论和数理统计了,模式识别技术到处都充满了概率和统计的思 想,我们经常所说的识别率, 其实就是概率的表达: 在大数据量 (严格地说应当 是数据量无穷大) 测试中识别成功的概率, 还有常用的贝叶斯决策分类器便是运 用了概率公式。 模式识别还用到了线性代数, 因为运用线性代数可以较为方便表 达具有多特征的事物, 我们一般会用向量来表达一个事物的特征,对于向量的计 算是一定会用到线性代数的知识的。还有一

4、个较为高层次的数学知识是泛函分析, 泛函分析是 研究无限维线性空间上的泛函数和算子理论,SVM (支持向量机) 便是以泛函分析中的理论为基础的,SVM 技术还运用到了最优化理论数学知 识,最近中科院王守觉院士提出的多维空间仿生模式识别技术是以拓扑学为 理论基础的。所以说模式识别科学是应用到数学知识最多的一门学科之一, 在我们研究模式识别技术过程中会碰到一个又一个的数学知识,有时需要我 们重新拿起大学时的数学书来学习,有时还需要我们去寻找和学习我们也许 从未学习过的数学知识,这时你会感觉到你真的是在做研究,仿佛又回到了 大学学习时光,你更会感觉到要学好模式识别技术需要多年的积累,浮躁不 得,当然

5、,如果你越是坚持下来,你的价值就会越大,因为这是个可以不断 得到积累的技术, 不像研究上层应用,研究多年并不意味着你就会有多厉害, 一下子没有跟进便会被淘汰掉,而后面进来研究的人很容易超越前面研究的 人,所以说,模式识别技术是一个喜欢做研究的人的一个很好的选择。模式识别大体上可以分为统计模式识别和句法模式识别,统计模式识别是对 大量的样本进行统计或学习而最后得到一个分类器,如贝叶斯分类器、神经网络、2 SVM、K 近邻法则等都是属于统计模式识别的方法,句法模式识别则是依据一 定的逻辑规则进行判别, 如图像形状判断、 语法类型判断、 地址细分等, 句法模 式识别也可以称为结构模式识别,一般是应用

6、于逻辑清楚、 不易混淆的识别应用 中,识别方法也比较简单, 所以现在研究的大部分都是统计模式识别的方法,而 且在这其中研究比较集中的是机器学习,因为人们相信:像人类辨别新事物一样, 都需要一个学习过程,对于计算机也可以像人类那样地去学习而具有辨识能力。 神经网络技术便是基于模仿人类的学习而产生的。说了这么多, 其实我想表达的 是统计方法在模式识别中的重要性,在这一节我们主要就来讨论一下概率论和统 计在模式识别中的应用。说到概率和统计就不得不提贝叶斯决策理论,它是解决模式分类问题的一种 基本统计途径,贝叶斯决策理论的基本公式可做如下描述:某个特征被判断为某类的概率 =该类中出现这个特征的概率 该

7、类存在的概率 / 这个特征出现的概率上面这个公式是一个条件概率公式的推导,这里用文字来描述,以便更好理解,要想了解更多这方面的知识可以查找有关模式识别的理论书,几乎每种理论书的第一个部分就是描述这方面的内容。概率上的应用还有较为常用的理论是马尔可夫模型(Markov model)和稳马 尔可夫模型 (HMM) ,这个是分词技术和语音识别中的基本理论工具之一,其中 词频统计是其基本统计需要。 马尔可夫模型和稳马尔可夫模型都是多条件概率的 应用,追求的也是大概率结果。马尔可夫模型又可以分为一阶马夫可夫模型 (Bigram 模型)、二阶马尔可夫模型 (Trigram 模型)、n 阶马尔可夫模型 (n

8、-gram 模型),阶数越大,则需要统计的数据越多,计算的复杂度也会猛增。HMM 运 用了前向计算法 (Viterbi 算法),计算复杂度大大降低了下来,所以得到了较为 广泛的应用,当今的语音识别算法就是采用HMM 理论模型实现的。统计分析中有个协方差矩阵,它可以应用于PCA(主成分分析)降维方法 中。可以很容易理解, 当特征越多时, 计算则越复杂, 而且计算结果准确性则越 低,所以我们总是要想方设法把特征维数降下来,较为常用的方法则是用PCA 降维方法(另一个方法 VQ 也是个很好的降维方法) ,这个方法是通过大量的样 本统计,统计出方差最小的特征, 方差越小, 则说明这种特征越易混淆,越无

9、助 于分类,于是就可以把这些特征去掉,以此降低了特征维数。类似于神经网络的机器学习方法也是属于统计模式识别一种,机器学习方法 大大简化了我们对样本数据的统计工作量,采用了自动化的方法根据大量样本生 成一个分类器, 在这其中, 统计分析的应用较为稳性, 以至于让你无法承认它是 属于统计模式识别的方法, 但是对于大量样本的学习也可以算是统计方法的范畴, 如神经网络中的每个神经节点的系数的形成是依据一定算法(如LMS 算法)通 过大量样本修正出来的,这个修正的过程也可以算是统计分析的过程。既然模式识别技术与概率和统计分析密不可分,所以在设计分类器之前, 首 先要准备好大量的、 周全的、能够覆盖各种情

10、况的训练样本和测试样本,然后对 训练样本进行统计分析, 分析样本的特点, 分析样本的特征值分布规律,得到各 种统计数据, 最后再来确定模式识别的方法,测试样本用来检验分类器的合理性3 问题,根据测试样本测试出来的问题,需要返回去修改分类器, 这是一个反复的 过程,直至最后达到分类器的性能目标。我们在表示某个事物的特征时,其特征数一般有三个以上的, 甚至有好几百 个特征,为了表示方便, 对于特征值一般采用向量的形式来表示,所以我们在研 究模式识别时会有很多的矩阵运算,对于特征值的运算我们可以把它想象成是一 个高维空间中的运算, 矩阵运算可以方便地表达高维空间中的运算,所以说线性 代数是研究模式识

11、别的数学基础,更高层次的数学理论是泛函分析,它是研究无 限维空间的几何学和分析学。对于三维以下空间, 我们可以较容易地想象出来, 但是三维以上的空间超出 了我们的感知能力, 很多在三维以下空间的计算, 推广到高维空间时,则不灵了, 出现了所谓的“维数灾难”, 这是因为高维空间中出现了稀疏性和空空间的现象, 即高维空间中的数据分布会非常地稀疏,且可能出现密度会很高的空区域中点, 维数灾难是 Bellman 首先提出来的, 它泛指在数据分析中遇到的由于变量过多而 引起的一系列问题,有点像“指数爆炸”,随着指数的递增,数据会迅速膨胀到 难以想象的大。SVM 模式识别技术利用核方法,在高维空间中进行变

12、换,巧妙地解决了维 数灾难的问题,所以很多实验表明SVM 分类算法总是能够优于其它分类算法。 虽然有如此的好办法, 但是我们还是得想办法降低维数,降低了维数, 不仅可以 降低计算的复杂度, 也可以排除不必要的干扰特征,在众多的特征中也许有些特 征是没有用的, 即可能存在不是特征的特征,把这些无用的特征去掉, 可以改善 分类器的性能,目前降低维数主要应用的办法是PCA 方法,很多人在描述这个 方法时总要扯上协方差矩阵, 让人陷入一大堆公式的推导中,其实核心思想就是 把方差最小的那些特征排除掉,如果你知道这一点, 可以不用理协方差矩阵, 直 接通过统计样本的特征值方差来实现PCA 方法。两组特征之

13、间的距离可以有很多种表示方法,如欧氏距离、 绝对值距离、 切 比雪夫距离、马氏距离、兰氏距离、相似系数、定性指标的距离等,大家比较熟 悉的是欧氏距离, 其实这种距离在高维空间并不常用,不仅是因为计算量大, 还 因为不同特征的值, 其计算单位不一样, 不可以把每种特征同等看待,在模式识 别中采用哪种距离计算方式很重要,会关系到分类器设计的成败。 计算距离的方 式需要根据实际情况灵活应用,有时甚至可以自己设计距离计算方式,只要满足 距离的四个条件即可:1当且仅当两点重合时距离才会等于0;2距离值必需是大于或等于0;3对称性:从 A 点到 B 点求得的距离等于从B 点到 A 点求得的距离;4 三角不

14、等式:三个点形成的三角距离关系中, 任两边的和大于第三边。学习模式识别我个人觉得从神经网络入手可能是个较好的选择,一方面可以 避免一下子就陷入复杂的公式推导中,另一方面可以让我们较快就能体验到模式 识别是个什么样的技术, 因为我们可以利用Matlab 或 openCV 非常方便地进行 实践(学习一种技术,多去实践非常有助于对理论知识的理解)。神经网络技术是 从仿生的角度来思考模式识别技术,探寻模仿人类的智能一直以来是科学界所研 究的目标,神经网络技术就是基于此而产生的,但是神经网络能够得到应用还是4 因为数学问题方面得到了解决, 最优化理论中的梯度下降法便是神经网络实现原 理的核心,梯度下降算

15、法是一个循环的计算过程:1为算法模型参数值选择初始值,或随机选择些初始值; 2计算每个参数对应的损失函数的变化梯度; 3根据梯度值改变参数值,使得错误值变得更小; 4重复第二和第三步骤直至梯度值接近于0。神经网络方法就是通过训练样本进行学习来拟合出一条分割线(对于维数是 三维的识别, 则是个平面或曲面, 三维以上则是超平面或超曲面),如果这条分 割线是一条直线(或平面,或超平面),则称为线性神经网络,否则为非线性神 经网络,线性神经网络较好理解, 理解了线性神经网络, 对于非线性神经网络则 能够更易理解, 所以这里先以线性神经网络为例来解释神经网络的原理,下图是 一个二维特征分布图, 中间的一

16、条直线是分割线, 我们现在要关心的问题是这条 分割线是如何计算出来, 如果学过数学, 我们知道可以用最小二乘法把它计算出 来,但这里我们将要用神经网络的学习方法来把它学习出来从上图我们可以知道, 只要我们能够得到w1,w2,b 的值,则这条直线我们就 可以求出来了,据此我们构造出如下所示的神经网络拓扑图:5 从上图中的 w1,w2,我们把它们称为权值,b 称为阈值,神经网络的学习过 程便是不断地调整权值和阈值, 直至最后达到最小的错误率, 对于线性神经网络, 我们可以采用LMS 算法,即最小均方差算法来求出权值和阈值,如下是LMS 算法的描述:原理:通过调整线性神经网络的权值(w)和阈值 (b),使得均方差最小。已知 有样本集: p1,t1,p2,t2,p3,t3 pn,tn ,(如果样本特征值是多维 的,则 p 是个向量表达式)。求出均方差:mse = sum( e( i )2 ) / n = sum(t(i) a(i)2 / n, 其中 i = 1n, a(i) = piw + b。假设第 k 步已分别求出权值梯度(Gw)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号