曲轴位置传感器[1].doc1

上传人:mg****85 文档编号:35910723 上传时间:2018-03-22 格式:DOC 页数:8 大小:45KB
返回 下载 相关 举报
曲轴位置传感器[1].doc1_第1页
第1页 / 共8页
曲轴位置传感器[1].doc1_第2页
第2页 / 共8页
曲轴位置传感器[1].doc1_第3页
第3页 / 共8页
曲轴位置传感器[1].doc1_第4页
第4页 / 共8页
曲轴位置传感器[1].doc1_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《曲轴位置传感器[1].doc1》由会员分享,可在线阅读,更多相关《曲轴位置传感器[1].doc1(8页珍藏版)》请在金锄头文库上搜索。

1、凸轮轴位置传感器百科名片百科名片凸轮轴位置传感器也叫同步信号传感器,它是一个气缸判别定位装置,向 ECU 输入凸轮轴位置信号,是点火控制的主控信号。有曲轴位置传感器和凸轮轴位置传感器s 类。曲轴和凸轮轴位置传感器 1、功用与类型 曲轴位置传感器 (Crankshaft Position Sensor,CPS)又称为发动机转速与曲轴转角传感器,其功用是采集曲轴转动角度和发动机转速信号,并输入电子控制单元 (ECu),以便确定点火时刻和喷油时刻。 凸轮轴位置传感器 (Camshaft Position Sensor,CPS)又称为气缸识别传感器(Cylinder Identification Se

2、nsor,CIS),为了区别于曲轴位置传感器(CPS),凸轮轴位置传感器一般都用 CIS 表示。凸轮轴位置传感器的功用是采集配气凸轮轴的位置信号,并输入ECU,以便 ECU 识别气缸1 压缩上止点,从而进行顺序喷油控制、点火时刻控制和爆燃控制。此外,凸轮轴位置信号还用于发动机起动时识别出第一次点火时刻。因为凸轮轴位置传感器能够识别哪一个气缸活塞即将到达上止点,所以称为气缸识别传感器。 2光电式曲轴与凸轮轴位置传感器 (1)结构特点 日产公司生产的光电式曲轴与凸轮轴位置传感器是由分电器改进而成的,主要由信号盘 (即信号转子 )、信号发生器、配电器、传感器壳体和线束插头等组成。 信号盘是传感器的信

3、号转子,压装在传感器轴上,如图2-22 所示。在靠近信号盘的边缘位置制作有均匀间隔弧度的内、外两圈透光孔。其中,外圈制作有 360 个透光孔(缝隙),间隔弧度为 1。(透光孔占05。 ,遮光孔占 05。),用于产生曲轴转角与转速信号;内圈制作有6 个透光孔(长方形孑 L),间隔弧度为 60。 ,用于产生各个气缸的上止点信号,其中有一个长方形的宽边稍长,用于产生气缸1 的上止点信号。 信号发生器固定在传感器壳体上,它由Ne 信号(转速与转角信号 )发生器、G 信号(上止点信号)发生器以及信号处理电路组成。 Ne 信号与 G 信号发生器均由一个发光二极管 (LED)和一个光敏晶体管 (或光敏二极管

4、)组成,两个 LED 分别正对着两个光敏晶体管。 (2)工作原理 光电式传感器的工作原理如图 2-22 所示。信号盘安装在发光二极管(LED)与光敏晶体管 (或光敏二极管 )之间。当信号盘上的透光孔旋转到 LED 与光敏晶体管之间时, LED 发出的光线就会照射到光敏晶体管上,此时光敏晶体管导通,其集电极输出低电平 (01O3V);当信号盘上的遮光部分旋转到 LED 与光敏晶体管之间时, LED 发出的光线就不能照射到光敏晶体管上,此时光敏晶体管截止,其集电极输出高电平(4852V)。 如果信号盘连续旋转,透光孔和遮光部分就会交替地转过LED 而透光或遮光,光敏晶体管集电极就会交替地输出高电平

5、和低电平。当传感器轴随曲轴和配气凸轮轴转动时,信号盘上的透光孔和遮光部分便从LED 与光敏晶体管之间转过, LED 发出的光线受信号盘透光和遮光作用就会交替照射到信号发生器的光敏晶体管上,信号传感器中就会产生与曲轴位置和凸轮轴位置对应的脉冲信号。 由于曲轴旋转两转,传感器轴带动信号盘旋转一圈,因此,G 信号传感器将产生 6 个脉冲信号。 Ne 信号传感器将产生 360 个脉冲信号。因为 G 信号透光孔间隔弧度为 60。 ,曲轴每旋转 120。就产生一个脉冲信号,所以通常 G 信号称为 120。信号。设计安装保证 120。信号在上止点前 70。(BTDC70。)时产生,且长方形宽边稍长的透光孔产

6、生的信号对应于发动机气缸 1 上止点前 70。 ,以便 ECU 控制喷油提前角与点火提前角。因为 Ne 信号透光孔间隔弧度为 1。(透光孔占 05。 ,遮光孔占 05。),所以在每一个脉冲周期中,高、低电平各占1。曲轴转角,360 个信号表示曲轴旋转 720。 。曲轴每旋转 120。 ,G 信号传感器产生一个信号, Ne 信号传感器产生 60 个信号。 3磁感应式曲轴与凸轮轴位置传感器 (1)磁感应式传感器工作原理 磁感应式传感器的工作原理如图 2-23 所示,磁力线穿过的路径为永久磁铁 N 极一定子与转子间的气隙一转子凸齿一转子凸齿与定子磁头间的气隙一磁头一导磁板一永久磁铁S 极。当信号转子

7、旋转时,磁路中的气隙就会周期性地发生变化,磁路的磁阻和穿过信号线圈磁头的磁通量随之发生周期性变化。根据电磁感应原理,传感线圈中就会感应产生交变电动势。 当信号转子按顺时针方向旋转时,转子凸齿与磁头间的气隙减小,磁路磁阻减小,磁通量 增多,磁通变化率增大 (ddt0),感应电动势 E 为正(E0),如图 2-24 中曲线 abc 所示。当转子凸齿接近磁头边缘时,磁通量 急剧增多,磁通变化率最大 ddt=(ddt)max,感应电动势 E 最高(E=Emax),如图 2-24 中曲线 b 点所示。转子转过 b 点位置后,虽然磁通量 仍在增多,但磁通变化率减小,因此感应电动势E 降低。 当转子旋转到凸

8、齿的中心线与磁头的中心线对齐时 (见图 2-24b),虽然转子凸齿与磁头间的气隙最小,磁路的磁阻最小,磁通量 最大,但是由于磁通量不可能继续增加,磁通变化率为零,因此感应电动势E 为零,如图 2-24 中曲线 c 点所示。 当转子沿顺时针方向继续旋转,凸齿离开磁头时 (见图 2-23c),凸齿与磁头间的气隙增大,磁路磁阻增大,磁通量 减少(ddt 0),所以感应电动势 E 为负值,如图 2-24 中曲线 cda 所示。当凸齿转到将要离开磁头边缘时,磁通量 急剧减少,磁通变化率达到负向最大值ddf=-(ddt)max,感应电动势 E 也达到负向最大值 (E=-Emax),如图 2-24 中曲线上

9、 d 点所示。 由此可见,信号转子每转过一个凸齿,传感线圈中就会产生一个周期性交变电动势,即电动势出现一次最大值和一次最小值,传感线圈也就相应地输出一个交变电压信号。磁感应式传感器的突出优点是不需要外加电源,永久磁铁起着将机械能变换为电能的作用,其磁能不会损失。当发动机转速变化时,转子凸齿转动的速度将发生变化,铁心中的磁通变化率也将随之发生变化。转速越高,磁通变化率就越大,传感线圈中的感应电动势也就越高。转速不同时,磁通和感应电动势的变化情况如图 2-24 所示。 由于转子凸齿与磁头间的气隙直接影响磁路的磁阻和传感线圈输出电压的高低,因此在使用中,转子凸齿与磁头间的气隙不能随意变动。气隙如有变

10、化,必须按规定进行调整,气隙一般设计在0204mm范围内。 2)捷达、桑塔纳轿车磁感应式曲轴位置传感器 1)曲轴位置传感器结构特点:捷达 AT 和 GTX、桑塔纳 2000GSi型轿车的磁感应式曲轴位置传感器安装在曲轴箱内靠近离合器一侧的缸体上,主要由信号发生器和信号转子组成,如图2-25 所示。 信号发生器用螺钉 固定在发动机缸体上,由永久磁铁、传感线圈和线束插头组成。传感线圈又称为信号线圈,永久磁铁上带有一个磁头,磁头正对安装在曲轴上的齿盘式信号转子,磁头与磁轭(导磁板)连接而构成导磁回路。 信号转子为齿盘式,在其圆周上均匀间隔地制作有58 个凸齿、57个小齿缺和一个大齿缺。大齿缺输出基准

11、信号,对应发动机气缸1 或气缸 4 压缩上止点前一定角度。大齿缺所占的弧度相当于两个凸齿和三个小齿缺所占的弧度。因为信号转子随曲轴一同旋转,曲轴旋转一圈 (360。),信号转子也旋转一圈 (360。),所以信号转子圆周上的凸齿和齿缺所占的曲轴转角为 360。 ,每个凸齿和小齿缺所占的曲轴转角均为 3。(583。+573。=345。),大齿缺所占的曲轴转角为15。(23。+33。=15。)。 2)曲轴位置传感器工作情况:当曲轴位置传感器随曲轴旋转时,由磁感应式传感器工作原理可知,信号转子每转过一个凸齿,传感线圈中就会产生一个周期性交变电动势 (即电动势出现一次最大值和一次最小值),线圈相应地输出

12、一个交变电压信号。因为信号转子上设有一个产生基准信号的大齿缺,所以当大齿缺转过磁头时,信号电压所占的时间较长,即输出信号为一宽脉冲信号,该信号对应于气缸1 或气缸 4 压缩上止点前一定角度。电子控制单元 (ECU)接收到宽脉冲信号时,便可知道气缸 1 或气缸 4 上止点位置即将到来,至于即将到来的是气缸1 还是气缸 4,则需根据凸轮轴位置传感器输入的信号来确定。由于信号转子上有 58 个凸齿,因此信号转子每转一圈 (发动机曲轴转一圈 ),传感线圈就会产生 58 个交变电压信号输入电子控制单元。 每当信号转子随发动机曲轴转动一圈,传感线圈就会向电子控制单元(ECU)输入 58 个脉冲信号。因此,

13、 ECU 每接收到曲轴位置传感器 58个信号,就可知道发动机曲轴旋转了一圈。如果在1min 内 ECU 接收到曲轴位置传感器 116000 个信号,ECU 便可计算出曲轴转速 n 为2000(n=11600058=2000)rrain;如果 ECU 每分钟接收到曲轴位置传感器 290000 个信号,ECU 便可计算出曲轴转速为5000(n=29000058=5000)rmin。依此类推, ECU 根据每分钟接收曲轴位置传感器脉冲信号的数量,便能计算出发动机曲轴旋转的转速。发动机转速信号和负荷信号是电子控制系统最重要、最基本的控制信号,ECU 根据这两个信号就能计算出基本喷油提前角 (时间)、基

14、本点火提前角(时间)和点火导通角 (点火线圈一次电流接通时间 )三个基本控制参数。捷达 AT 和 GTx、桑塔纳 2000GSi 型轿车磁感应式曲轴位置传感器信号转子上大齿缺产生的信号为基准信号, ECU 控制喷油时间和点火时间是以大齿缺产生的信号为基准进行控制的。当ECu 接收到大齿缺产生的信号后,再根据小齿缺信号来控制点火时间、喷油时间和点火线圈一次电流接通时间 (即导通角)。 3)丰田轿车 TCCS 磁感应式曲轴与凸轮轴位置传感器 丰田计算机控制系统 (1FCCS)采用的磁感应式曲轴与凸轮轴位置传感器由分电器改进而成,由上、下两部分组成。上部分为检测曲轴位置基准信号(即气缸识别与上止点信

15、号,称为 G 信号)发生器;下部分为曲轴转速与转角信号 (称为 Ne 信号)发生器。 1)Ne 信号发生器的结构特点: Ne 信号发生器安装在 G 信号发生器的下面,主要由 No2 信号转子、 Ne 传感线圈和磁头组成,如图 2-26a 所示。信号转子固定在传感器轴上,传感器轴由配气凸轮轴驱动,轴的上端套装分火头,转子外制有 24 个凸齿。传感线圈及磁头固定在传感器壳体内,磁头固定在传感线圈中。 2)转速与转角信号的产生原理与控制过程:当发动机曲轴旋转时,配气凸轮轴便驱动传感器信号转子旋转,转子凸齿与磁头间的气隙交替发生变化,传感线圈的磁通随之交替发生变化,由磁感应式传感器工作原理可知,在传感

16、线圈中就会感应产生交变电动势,信号电压的波形如图 2-26b 所示。因为信号转子有 24 个凸齿,所以转子旋转一圈,传感线圈就会产生 24 个交变信号。传感器轴每转一圈 (360。)相当于发动机曲轴旋转两圈 (720。),所以一个交变信号 (即一个信号周期 )相当于曲轴旋转 30。(720。24=30。),相当于分火头旋转 15。(30。2=15。)。ECU 每接收 Ne 信号发生器 24 个信号,即可知道曲轴旋转了两圈、分火头旋转了一圈。 ECU 内部程序根据每个 Ne 信号周期所占时间,即可计算确定发动机曲轴转速和分火头转速。为了精确控制点火提前角和喷油提前角,还需将每个信号周期所占的曲轴转角 (30。角)分得更小。微机完成这一工作十分方便,由分频器将每个Ne 信号(曲轴转角 30。)等分成 30 个脉冲信号,每个脉冲信号就相当于曲轴转角1。(30。30=1。)。如将每个 Ne 信号等分成 60 个脉冲信号,则每个脉冲信号相当于曲轴转角

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号