超高分子量聚乙烯耐磨复合材料性能与应用

上传人:豆浆 文档编号:30649074 上传时间:2018-01-31 格式:DOC 页数:9 大小:4.09MB
返回 下载 相关 举报
超高分子量聚乙烯耐磨复合材料性能与应用_第1页
第1页 / 共9页
超高分子量聚乙烯耐磨复合材料性能与应用_第2页
第2页 / 共9页
超高分子量聚乙烯耐磨复合材料性能与应用_第3页
第3页 / 共9页
超高分子量聚乙烯耐磨复合材料性能与应用_第4页
第4页 / 共9页
超高分子量聚乙烯耐磨复合材料性能与应用_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《超高分子量聚乙烯耐磨复合材料性能与应用》由会员分享,可在线阅读,更多相关《超高分子量聚乙烯耐磨复合材料性能与应用(9页珍藏版)》请在金锄头文库上搜索。

1、p001超高分子量聚乙烯耐磨复合材料性能与应用邓如生 黄安民 朱志勇 姜稳定 刘银 中国南车株洲时代新材料科技股份有限公司,株洲 412007摘要:本文介绍了两种桥梁支座关键耐磨材料,即超高分子量聚乙烯(UHMWPE)复合材料和聚四氟乙烯(PTFE)材料的制备。并对其性能进行了详细对比研究。研究结果表明,经过改性 UHMWPE 复合材料比 PTFE 具有更为突出的综合力学性能,特别是承载能力高、抗蠕变性能好、耐磨损性能突出,是高速铁路、公路桥梁支座理想的耐磨材料。通过对 UHMWPE 复合材料磨损形貌表征,浅析了磨损机理,指出了影响复合材料耐磨的关键因素。关键词:超高分子量聚乙烯;聚四氟乙烯;

2、耐磨材料;桥梁支座;性能近年来,我国高速铁路发展突飞猛进,短短几年间建成全球运营时速最快的客运专线,让世人惊叹。随着列车设计时速越来越高,对列车运行的平稳性和对桥梁结构抗挠和抗扭刚度及重载、耐磨等安全性提出了更高要求1。桥梁支座不仅传递桥梁上部的荷载,还能调节上部结构和下部结构之间的相对位移,对高速列车的安全和舒适起着非常重要作用,因此,铁道部规定,时速超过200km 的高速铁路桥梁需配置桥梁支座。而桥梁支座耐磨材料是支座中至关重要的滑动部件,主要起着承载、摩擦作用,其质量直接影响桥梁支座的性能和使用寿命。这必然要求桥梁支座耐磨材料具有优异的承载能力、抗蠕变性能、自润滑及耐磨等特性。聚四氟乙烯

3、(PTFE) 耐磨材料具有良好的自润滑性能 ,我国上世纪七十年代以来采用 PTFE 作为公路、铁路桥梁支座耐磨材料得到广泛应用。但其存在设计承载能力偏低、活载位移速率偏小、易冷流2-4、磨损率偏高等缺点,难以满足铁路高速、重载的要求。超高分子量聚乙烯(UHMWPE)具有耐磨损、耐冲击、耐低温、自润滑和不易粘附异物等优良性能5,在国外被称为“神奇的塑料” 。本世纪初德国毛勒公司将超高分子量聚乙烯改性,进一步改善了超高分子量聚乙烯的抗蠕变和自润滑特性,替代 PTFE 应用于高速铁路及磁悬浮列车的桥p001梁支座上,以适应支座快速位移的需要。超高分子量聚乙烯同时也具有成型加工困难、表面硬度低,机械强

4、度不高,耐热性差、导热性差以及应力开裂等许多缺点。本课题组通过采用润滑耐磨剂、纳米导热剂共混改性以及化学交联改性,制备了高强度、高承载、抗蠕变、耐热性能好以及优异耐磨性能的改性超高分子量聚乙烯复合耐磨材料6,本论文对其性能与 PTFE 材料进行了对比研究。1 实验部分1.1 UHMWPE 复合材料制备取 UHMWPE 原料(分子量大于 300 万)100 份,润滑耐磨剂(自制)3 份,纳米导热剂 2 份,有机交联剂 0.2 份高速混合均匀后于 15MPa、2305加热熔融 3h,冷却模压定型为 UHMWPE 复合材料耐磨板(UHMWPE 复合材料) 。1.2 PTFE 材料制备取 PTFE 细

5、粉(粒径50m)于 30MPa 冷压后,室温静置 24h 后于3805恒温烧结 5h 制得 PTFE 耐磨板材(PTFE 材料) 。1.3 性能检测1.3.1 蠕变率将样品加工成 100*7 mm,使用图 1)所示的工装,将样品放入限位工装后,对样品匀速加载至 90MPa(加载时间 1min) ,记录此时的厚度变化,同时再次将传感器置零,保持 90MPa 压力记录 24 小时样品形变量,算出样品厚度变化率即为蠕变率。图1 承载能力测试工装示意图1.3.2 摩擦磨耗实验本论文采用两种摩擦磨耗实验:干摩擦和油脂摩擦。干摩擦试验参照 GB/T 5478-2008 标准,采用 H-22 磨轮,载荷为

6、1Kg,连p001续磨 4000r(转速为 60r/min),考察摩擦试验前后重量变化。油脂摩擦采用双剪试验方法,参照参照客运专线桥梁盆式橡胶支座暂行技术条件补充规定和铁路行业标准 TB/T 2331-2004。UHMWPE 复合材料与PTFE 材料油脂摩擦实验条件及工装示意图分别如表 1 和图 2 所示。表1 UHMWPE复合材料与PTFE材料摩擦实验测试条件实验条件 压应力/ 试验温度 滑动幅度 摩擦速度 累计滑动距离UHMWPE 复合材料45MPa21 1 10mm 15mms-1 50kmPTFE 材料30MPa23 5 10mm 8mms-1 10km图2 摩擦测试工装示意图1.3.

7、3 其它测试其它测试均按国家或行业标准要求进行。2 结果与讨论2.1 桥梁支座简介将改性超高分子量聚乙烯复合原材料通过模压烧结即得耐磨板材,产品实物见图 3。耐磨板典型特点是一表面非常光滑,并带有储油的储油坑,作用是利用光滑面和油脂降低摩擦系数,提高产品耐磨性能;而另外一面带有一定纹路,相对较粗糙,目的是便于产品的安装和固定。耐磨板材是盆式橡胶支座和球型支座等桥梁支座重要组成部分,图 4 是盆式橡胶支座典型结构。在该结构中 ,耐磨板起着两个作用:一是利用其竖向刚度和弹性变形,向桥墩传递桥面的支承反力,承受垂直荷载及适应梁端转动;二是通过耐磨材料与滑动板组成Fp001的摩擦副,利用其低摩擦系数,

8、可使梁端能自由滑动,水平位移不受限制,保证了桥梁结构在活载、温度变化、混凝土收缩和蠕变等因素作用下能自由变形。因此,耐磨材料在桥梁减振隔震、减少桥梁摩擦、提高桥梁支座使用寿命起了至关重要的作用。图 3 UHMWPE 复合耐磨产品图 4 盆式橡胶支座结构图2.2 物理机械性能将制备的 UHMWPE 复合材料及 PTFE 材料在相同测试条件下,按照相同检测方法进行性能检测,其物理机械性能见表 1。从表 1 可以看出,UHMWPE 复合材料密度小,材质轻,PTFE 材料的密度是 UHMWPE 复合材料的 2.3 倍。UHMWPE 复合材料的断裂伸长率为 320%,稍低于 PTFE 材料,但 UHMW

9、PE 复合材料的拉伸强度、弯曲强度、压缩强度以及弹性模量均明显要高于 PTFE 材料,尤其是p001UHMWPE 复合材料的抗冲击性能十分优异。 。表 1 UHMWPE 复合材料与 PTFE 材料物理机械性能典 型 值性能指标 单位 测试方法UHMWPE 复合材料 PTFE 材料密度 g/cm3 GB/T 1033 0.94 2.17球压痕硬度 MPa ISO 2039-1 37.3 28.5拉伸强度 MPa ISO 527-1 43.1 37断裂伸长率 % ISO 527-3 320 380弹性模量 MPa GB/T 1040 826 420压缩强度 MPa GB/T 1041 35.4 2

10、7.9弯曲强度 MPa GB/T 9341 18.7 12.321 kJ.m-2 NB 15缺口冲击强度 -60 kJ.m-2 ASTM D4020 NB 17.32.3 耐热性能纯超高分子量聚乙烯耐热温度较低、热变形温度约 45,低于 PTFE 材料热变形温度;导热性能差,导热系数约 0.3 W/m*K,此极大限制了材料的应用。经过改性后的 UHMWPE 复合材料热变形温度有明显提升,达到 58,与 PTFE 材料接近。而且其导热系数也提高近一倍,为替代 PTFE 材料应用于桥梁支座耐磨材料打破了瓶颈,也极大拓展了其在建筑、工程机械等领域应用的可能。表 2 UHMWPE 复合材料与 PTFE

11、 材料耐热性能典 型 值性能指标 单位 测试方法UHMWPE 复合材料 PTFE 材料热变形温度 GB/T 1634-2004 58 61导热系数 W/m*K ASTM D5470 0.58 0.262.4 抗重载性能本论文采用蠕变率来表征材料的承载能力。超高分子量聚乙烯、PTFE 耐磨板在不同压力下的蠕变率见图 5。从图 5 看出,在承载压力情况下,随着时间增加,蠕变率明显上升,蠕变 4h 后,变化不大,材料蠕变性能基本趋于稳定;同时表明:UHMWPE 复合材料在 90MPa 和 190MPa 压应力下的限位承载压缩蠕变率均要明显低于 PTFE 材料,其在 90MPa 压应力下的形变量约为

12、PTFE 材料蠕变率的 1/2,在 190MPa 压应力下的形变量与 PTFE 材料在 90MPa 压应力下的蠕变情况相当,蠕变量为 32%。从材料蠕变后情况(图 6)也可以明显看出,即使在190MPa 压力下恒压 24h,UHMWPE 复合材料样品变形较小,而此时 PTFE 材料变p001形已接近破坏,实验表明 UHMWPE 复合材料 PTFE 材料具有更高的承载能力和抗蠕变能力。0481216202481216202428323640 UHMWPE复 合 材 料 90MPa24h复 合 材 料 1 PTFE材 料 90MPa24h材 料 1变变 /%变变 /h图 5 UHMWPE 复合材料

13、与 PTFE 材料不同压力下的蠕变率(a )90MPa(左为 PTFE 材料,右为 UHMWPE 复合材料)(b)190MPa (左为 PTFE 材料,右为 UHMWPE 复合材料)图 6 UHMWPE 复合材料与 PTFE 材料不同压力下蠕变 24h 后样品图2.5 耐磨性能将纯 UHMWPE 及 UHMWPE 复合材料干磨后的样品表面通过扫描电镜进行观察,p001表面形貌见图 7。可以看出,纯 UHMWPE 干磨后样品表面出现大量毛刺,这是UHMWPE 表层被抽丝形成的碎屑。而 UHMWPE 复合材料表面毛刺的大小和数量明显减少,但形成了少量犁沟沟痕。图 7 纯 UHMWPE 材料(左)与

14、 UHMWPE 复合材料(右)磨损表面 SEM 照片将 UHMWPE 复合材料通过压制储油坑在疲劳试验机上进行摩擦系数及 50km磨耗测试,结果表明:UHMWPE 复合材料的静摩擦系数低,在磨耗里程为 3-25km时,动摩擦系数比较稳定,这是由于配方中的的耐磨剂形成了耐磨剂转移膜,避免了摩擦副与耐磨板的直接接触摩擦。随着磨耗里程增加,动摩擦系数逐渐增大,这可能是摩擦生热并破坏了转移膜所致。50km 动摩擦系数达到 0.04(见图 8) ,磨耗为 0.5m/km,满足高速铁路桥梁支座对超高分子量聚乙烯耐磨板的使用要求。从图也可以看出,UHMWPE 复合材料经过 50km 磨耗后,产品有轻微变形,

15、储油坑明显变浅,表面有类似刮伤的沟痕。从表 3 对照数据可以明显看出 UHMWPE 复合材料静摩擦系数稍高于 PTFE 材料,但耐磨性能远好于 PTFE 材料。p001图 8 UHMWPE 复合材料随磨耗里程动摩擦系数变化图表 3 UHMWPE 复合材料与 PTFE 材料耐磨性能典 型 值性能指标 单位 测试方法 UHMWPE 复合材料 PTFE 材料初始静摩擦系数 / 0.0035 0.0027线磨耗率 m/km客运专线桥梁盆式橡胶支座暂行技术条件补充规定 0.4 13.5将两种耐磨材料在相同测试条件下进行磨耗试验发现,PTFE 材料在经过4km 摩擦后就明显变形,且表面破坏磨损严重,有较多

16、碎屑被拉出。这表明在摩擦条件更苛刻情况下,UHMWPE 复合材料耐磨性能仍明显好于 PTFE 材料。(a)PTFE 材料摩擦 4km (b)UHMWPE 复合材料摩擦 50km图 9 相同条件下两种耐磨材料摩擦不同里程后样品图p0013 产品应用与展望本文研制的 UHMWPE 复合耐磨材料更能适应载荷量更大、相对位移速度更快、累计滑动位移量更长和耐磨要求更高的工作环境,是高速铁路、公路桥梁支座理想的耐磨材料。已在武广、京沪高铁桥梁工程中得到广泛应用。根据国家中国铁路中长期发展规划 ,未来 10 年,我国高速铁路建设里程超过 1.6万公里,而铁路桥梁占总里程达 80%左右。可以预料,高性能改性超高分子量聚乙烯复合耐磨材料在高速铁路、公路桥梁支座领域中有着广阔的应用前景。参考文献1 王召祜.京沪高速铁路桥梁设计J.铁道科学与工程学报,2005,2(5):13-162 党

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 医学/心理学 > 综合/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号