核磁共振氢谱解析(1)PPT

上传人:日度 文档编号:147030992 上传时间:2020-10-05 格式:PPT 页数:129 大小:4MB
返回 下载 相关 举报
核磁共振氢谱解析(1)PPT_第1页
第1页 / 共129页
核磁共振氢谱解析(1)PPT_第2页
第2页 / 共129页
核磁共振氢谱解析(1)PPT_第3页
第3页 / 共129页
核磁共振氢谱解析(1)PPT_第4页
第4页 / 共129页
核磁共振氢谱解析(1)PPT_第5页
第5页 / 共129页
点击查看更多>>
资源描述

《核磁共振氢谱解析(1)PPT》由会员分享,可在线阅读,更多相关《核磁共振氢谱解析(1)PPT(129页珍藏版)》请在金锄头文库上搜索。

1、1,第三章 核磁共振氢谱,1. 核磁共振的基本原理 2. 核磁共振仪与实验方法 3. 氢的化学位移 4. 各类质子的化学位移 5. 自旋偶合和自旋裂分 6. 自旋系统及图谱分类 7. 核磁共振氢谱的解析,2,前言,过去50年,波谱学已全然改变了化学家、生物学家和生物医学家的日常工作,波谱技术成为探究大自然中分子内部秘密的最可靠、最有效的手段。NMR是其中应用最广泛研究分子性质的最通用的技术:从分子的三维结构到分子动力学、化学平衡、化学反应性和超分子集体、有机化学的各个领域。 1945年 Purcell(哈佛大学) 和 Bloch(斯坦福大学)发现核磁共振现象,他们获得1952年Nobel物理奖

2、 1951年 Arnold 发现乙醇的NMR信号,及与结构的关系 1953年 Varian公司试制了第一台NMR仪器,3,NMR发展,近二十多年发展 高强超导磁场的NMR仪器,大大提高灵敏度和分辨率; 脉冲傅立叶变换NMR谱仪,使灵敏度小的原子核能被测定; 计算机技术的应用和多脉冲激发方法采用,产生二维谱,对判断化合物的空间结构起重大作用。 英国R.R.Ernst教授因对二维谱的贡献而获得1991年的Nobel奖。 瑞士科学家库尔特维特里希因“发明了利用核磁共振技术测定溶液中生物大分子三维结构的方法”而获得2002年诺贝尔化学奖。,4,1H-NMR how many types of hydr

3、ogen ? how many of each type ? what types of hydrogen ? how are they connected ?,5,NMR谱的结构信息,化学位移 偶合常数 积分高度,6,1. 核磁共振的基本原理,原子核的磁矩 自旋核在磁场中的取向和能级 核的回旋和核磁共振 核的自旋弛豫,7,质量数与电荷数均为双数,如C12,O16,没有自旋现象。I=0 质量数为单数,如H1,C13,N15,F19,P31。I为半整数,1/2,3/2,5/2 质量数为双数,但电荷数为单数,如H2,N14,I为整数,1,2 I为自旋量子数,原子核的自旋、磁矩,8,自旋角动量(PN

4、),自旋量子数(I) I=0,1/2,1,3/2 磁矩(N*),核磁矩单位(N),核磁子;磁旋比(N),9,自旋核在磁场中的取向和能级 具有磁矩的核在外磁场中的自旋取向是量子化的,可用磁量子数m来表示核自旋不同的空间取向,其数值可取:m =I,I-1,I-2, ,-I ,共有2I +1个取向。,10,I = n / 2 n = 0 , 1 , 2 , 3 - (取整数),一些原子核有自旋现象,因而具有角动量,原子核是带电的粒子,在自旋的同时将产生磁矩,磁矩和角动量都是矢量,方向是平行的。 哪些原子核有自旋现象? 实践证明自旋量子数I与原子核的质量数A和原子序数Z: A Z I 自旋形状 NMR

5、信号 原子核 偶数 偶数 0 无自旋现象 无 12C,16O, 32S, 28Si, 30Si 奇数 奇数或偶数 1/ 2 自旋球体 有 1H, 13C, 15N, 19F, 31P 奇数 奇数或偶数 3/2, 5/2,- 自旋惰球体 有 11B,17O,33S,35Cl,79Br,127I 偶数 奇数 1, 2, 3, - 自旋惰球体 有 2H, 10B, 14N,11,12,13,14,能级分裂,两种取向代表两个能级,m=-1/2能级高于m=1/2能级。,15,核的回旋和核磁共振 当一个原子核的核磁矩处于磁场BO中,由于核自身的旋转,而外磁场又力求它取向于磁场方向,在这两种力的作用下,核会

6、在自旋的同时绕外磁场的方向进行回旋,这种运动称为Larmor进动。,16,原子核的进动,在磁场中,原子核的自旋取向有2I+1个。各个取向由一个自旋量子数m表示。,自旋角速度,外磁场H0,进动频率,磁旋比:1H=26753, 2H=410 7,13C= 6726弧度/秒 高斯,17,18,共振条件,原子核在磁场中发生能级分裂,在磁场的垂直方向上加小交变电场,如频率为v射,当v射等于进动频率,发生共振。低能态原子核吸收交变电场的能量,跃迁到高能态,称核磁共振。,19,核磁共振的条件: E = h v迴= h v射= h BO /2 或 v射= v迴= BO /2 射频频率与磁场强度Bo是成正比的,

7、在进行核磁共振实验时,所用的磁强强度越高,发生核磁共振所需的射频频率也越高。,20,要满足核磁共振条件,可通过二种方法来实现:,频率扫描(扫频):固定磁场强度,改变射频频率 磁场扫描(扫场):固定射频频率,改变磁场强度 实际上多用后者。 各种核的共振条件不同,如:在1.4092特斯拉的磁场,各种核的共振频率为: 1H 60.000 MHZ 13C 15.086 MHZ 19F 56.444 MHZ 31P 24.288 MHZ 对于1H 核,不同的频率对应的磁场强度: 射频 40 MHZ 磁场强度 0.9400 特斯拉 60 1.4092 100 2.3500 200 4.7000 300 7

8、.1000 500 11.7500,21,Boltzmann分布,在质子群中处于高低能态的核各有多少? 在绝对温度0度时,全部核处于低能态 在无磁场时,二种自旋取向的几率几乎相等 在磁场作用下,原子核自旋取向倾向取低能态,但室温时热能比原子核自旋取向能级差高几个数量级,热运动使这种倾向受破坏,当达到热平衡时,处于高低能态的核数的分布服从Boltzmann分布: n+/n- 1+ E / kT 式中:n+ - 低能态的核数 n- - 高能态的核数 k - Boltzmann 常数 T - 绝对温度 当T=27 C,磁场强度为1.0特斯拉时,高低能态的核数只差6.8ppm 磁场强度为1.4092时

9、,高低能态的核数只差10ppm,22,核的自旋驰豫 驰豫过程可分为两种类型:自旋-晶格驰豫和自旋-自旋驰豫。,23,驰豫过程:由激发态恢复到平衡态的过程,自旋晶格驰豫:核与环境进行能量交换。体系能量降低而逐渐趋于平衡。又称纵向驰豫。速率1/T1,T1为自旋晶格驰豫时间。 自旋自旋驰豫:自旋体系内部、核与核之间能量平均及消散。又称横向驰豫。体系的做能量不变,速率1/T2,T2为自旋自旋时间。 驰豫时间与谱线宽度的关系 :即谱线宽度与驰豫时间成反比。 饱和:高能级的核不能回到低能级,则NMR信号消失的现象。,24,核磁共振仪,分类:按磁场源分:永久磁铁、电磁铁、超导磁场 按交变频率分:40 ,60

10、 ,90 ,100 , 200 ,500,-,800 MHZ(兆赫兹),频率越高,分辨率越高 按射频源和扫描方式不同分:连续波NMR谱仪(CW-NMR) 脉冲傅立叶变换NMR谱仪(FT-NMR) NMR仪器的主要组成部件: 磁体:提供强而均匀的磁场 样品管:直径4mm, 长度15cm,质量均匀的玻璃管 射频振荡器:在垂直于主磁场方向提供一个射频波照射样品 扫描发生器:安装在磁极上的Helmholtz线圈,提供一个附加可 变磁场,用于扫描测定 射频接受器 :用于探测NMR信号,此线圈与射频发生器、扫描 发生器三者彼此互相垂直。,25,PFT-NMR谱仪,PFT-NMR谱仪与CW谱仪主要区别:信号

11、观测系统,增加了脉冲程序器和数据采集、处理系统。各种核同时激发,发生共振,同时接受信号,得到宏观磁化强度的自由衰减信号(FID信号),通过计算机进行模数转换和FT变换运算,使FID时间函数变成频率函数,再经数模变换后,显示或记录下来,即得到通常的NMR谱图。 FT-NMR谱仪特点: 有很强的累加信号的能力,信噪比高(600:1),灵敏度高,分辨率好(0.45Hz)。可用于测定1H, 13C, 15N ,19F, 31P等核的一维和二维谱。可用于少量样品的测定。,26,2. 核磁共振仪与实验方法,按磁场源分:永久磁铁、电磁铁、超导磁 按交变频率分:40兆,60兆,90兆,100兆,220兆,25

12、0兆,300兆赫兹 频率越高,分辨率越高,27,28,29,30,31,32,33,34,交变频率与分辨率的关系,35,36,37,38,39,核磁共振波谱的测定,样品:纯度高,固体样品和粘度大液体样品必须溶解。 溶剂:氘代试剂(CDCl3, C6D6 ,CD3OD, CD3COCD3, C5D5N ) 标准:四甲基硅烷 (CH3)4Si ,缩写:TMS 优点:信号简单,且在高场,其他信号在低场, 值为正值;沸点低(26。5 C),利于回收样品; 易溶于有机溶剂;化学惰性 实验方法:内标法、外标法 此外还有:六甲基二硅醚(HMDC, 值为0.07ppm), 4,4-二甲基-4-硅代戊磺酸钠(D

13、SS, 水溶性,作为极性化合物的内标,但三个CH2的 值为0.53.0ppm,对样品信号有影响),40,41,42,图3-5 乙醚的氢核磁共振谱,43,3. 氢的化学位移,原子核由于所处的化学环境不同,而在不同的共振磁场下显示吸收峰的现象。,44,化学等价,分子中若有一组核,其化学位移严格相等,则这组核称为彼此化学等价的核。例如CH3CH2Cl中的甲基三个质子,它们的化学位移相等,为化学等价质子,同样亚甲基的二个质子也是化学等价的质子。,45,化学等价,处于相同化学环境的原子 化学等价原子 化学等价的质子其化学位移相同,仅出现一组NMR 信号。 化学不等价的质子在 NMR 谱中出现不同的信号组

14、。,例1:CH3-O-CH3 一组NMR 信号 例2:CH3-CH2-Br 二组NMR信号 例3:(CH3)2CHCH(CH3)2 二组NMR 信号 例4:CH3-CH2COO-CH3 三组NMR 信号,46,化学等价质子与化学不等价质子的判断,- 可通过对称操作或快速机制(如构象转换)互换的质子是化学等价的。 - 不可通过对称操作或快速机制(构象转换)互换的质子是化学不等价的。 - 与手性碳原子相连的 CH2 上的两个质子是化学不等价的。,对称操作,对称轴旋转 其他对称操作 (如对称面),等位质子,化学等价质子,对映异位质子,非手性环境为化学等价 手性环境为化学不等价,47,化学等价质子与化

15、学不等价质子的判断,48,化学等价质子与化学不等价质子的判断,49,磁等价,分子中若有一组核,它们对组外任何一个核都表现出相同大小的偶合作用,即只表现出一种偶合常数,则这组核称为彼此磁等价的核。例如:CH2F2中二个氢和二个氟任何一个偶合都是相同的,所以二个氢是磁等价的核,二个氟也是磁等价的核。,50,屏蔽效应 化学位移的根源,磁场中所有自旋核产生感应磁场,方向与外加磁场相反或相同,使原子核的实受磁场降低或升高,即屏蔽效应。,H核=HO(1-),其中H核表示氢核实际所受的磁场,为屏蔽常数 分类:顺磁屏蔽,抗磁屏蔽,51,52,化学位移的表示 :单位ppm,标准:四甲基硅(TMS),=0,(如以表示,=10,=10+),53,54,影响化学位移的因素,诱导效应 共轭效应 各向异性效应 Van der Waals效应 氢键效应和溶剂效应,55,诱导效应:氢原子核外成键电子的电子云密度产生的屏蔽效应。,拉电子基团:去屏蔽效应,化学位移左移,即增大 推电子基团:屏蔽效应,化学位移右移,即减小,56, /ppm,试比较下面化合物分子中 Ha Hb Hc 值的大小。,b a c, 电负性较大的原子,可减小H原子受到的屏蔽作用,引起 H原子向低场移动。向低场移动的程度正比于原子的电负 性和该原

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 总结/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号