Part4-第15章-斜拉桥的计算理论

上传人:我*** 文档编号:134444761 上传时间:2020-06-05 格式:PPT 页数:74 大小:867.50KB
返回 下载 相关 举报
Part4-第15章-斜拉桥的计算理论_第1页
第1页 / 共74页
Part4-第15章-斜拉桥的计算理论_第2页
第2页 / 共74页
Part4-第15章-斜拉桥的计算理论_第3页
第3页 / 共74页
Part4-第15章-斜拉桥的计算理论_第4页
第4页 / 共74页
Part4-第15章-斜拉桥的计算理论_第5页
第5页 / 共74页
点击查看更多>>
资源描述

《Part4-第15章-斜拉桥的计算理论》由会员分享,可在线阅读,更多相关《Part4-第15章-斜拉桥的计算理论(74页珍藏版)》请在金锄头文库上搜索。

1、斜拉桥的计算理论 同济大学桥梁工程系大跨度桥梁研究室 第十三章 第十三章斜拉桥的计算理论 1概述2斜拉桥恒载受力状态的优化3斜拉桥的有限位移理论分析4斜拉桥的稳定计算5考虑二阶效应的近似计算6小结 本章主要内容 斜拉桥 塔 梁 拉索三种基本构件组成的缆索承重结构体系结构表现为柔性的受力特性设计计算 根据结构形式 设计阶段和计算要求来选用相应的力学模式和计算理论 1 概述 1 概述 续 计算模式是设计计算的关键概念设计阶段 主要研究结构的设计参数 以求获得理想的结构布置 对结构内力精度要求不高 可以采用平面杆系模式技术设计阶段 若仅仅计算恒 活载作用下结构的内力 仍可选用平面杆系模式 此时活载的

2、空间效应用横向分布系数或偏载系数来表达 1 概述 续 计算模式是设计计算的关键计算空间荷载 风载 地震荷载 局部温差等 作用下的静力响应 空间杆系模式 注意实际结构与计算模式间的刚度等效性计算全桥构件的应力分布特性 空间板壳 块体和梁单元的组合模式 注意不同单元结合部的节点位移协调性 a 空间杆系模式b 块 壳 梁组合模式图13 1斜拉桥计算模式 1 概述 续 计算模式是设计计算的关键局部应力有限元分析 特殊部件的应力集中现象 斜拉索锚索区 塔梁固结区等根据圣维南原理 将特殊构件从整体结构中取出 细分结构网格 将整体结构在分离断面处的内力 位移作为被分析子结构的边界条件进行二次分析 1 概述

3、续 计算理论的选用也十分重要大跨径斜拉桥是柔性结构体系 非线性影响较为突出 概念设计阶段 主要研究成桥状态下宏观的力学响应特征 此时结构刚度较大 因此 计算可采用计入徐变 收缩的准非线性分析理论 对特大跨径柔性斜拉桥也可按线性二阶理论进行分析技术设计阶段 中等跨径的斜拉桥恒载分析仍以准非线性分析理论为主 超大跨径斜拉桥一般都要按有限位移理论进行验算 1 概述 续 斜拉桥要经历一个分阶段施工的过程结构在施工过程中刚度远小于成桥状态 几何非线性突出结构的荷载 自重 施工机具 预应力等 是在施工过程中逐级施加的每一施工阶段都可能伴随结构构形变化 构件材料的徐变 收缩 边界约束增减 预应力张拉和体系转

4、换 后期结构的受力状态和力学性能与前期结构有着密切联系施工阶段的结构分析一般采用有限位移理论 1 概述 续 斜拉桥的设计自由度很大 可以通过斜拉索力的调整来改变结构的受力分配 优化结构的受力斜拉桥的静力计算流程如下图 斜拉桥静力计算流程图 斜拉桥成桥恒载内力分布好坏是衡量设计优劣的重要标准之一由于受到设计施工中各种条件的限制 要求每座斜拉桥都满足零弯矩状态是不可能也是不现实的 2 斜拉桥恒载受力状态的优化 需要找到一组索力 其对应的成桥态就是对应目标下最优的成桥内力状态 求解这组最优索力 并在斜拉桥中加以实施 也就实现了斜拉桥的恒载受力优化在不改变结构参数的前提下 斜拉桥恒载状态的优化 也就转

5、化为斜拉索力的优化问题 2 斜拉桥恒载受力状态的优化 索梁组成的一次超静定体系 赘余力用拉索的张力N表示 2 1索力优化的基本概念 2 斜拉桥恒载受力状态的优化 13 1 图13 3索梁组合一次超静定体系 梁的弯矩为 如果按变形协调条件计算赘余力 易得 2 1索力优化的基本概念 续 取 式 13 2 变成 这一状态对应于斜拉桥一次落架时的恒载内力状态 为了优化梁的受力 可以根据需要拟定一个目标函数 现以梁上弯矩平方和为例 目标函数为 将式 13 1 代入式 13 3 使目标函数f最小的赘余力为 13 3 13 2 2 1索力优化的基本概念 续 这一状况相当于优化后的斜拉桥恒载状态 这时的内力状

6、态是通过索的张拉来实现的 正是这一张拉力 改善了梁的受力状况 13 4 图13 4优化前后梁弯矩图 2 2斜拉桥索力优化方法评述 1 指定受力状态的索力优化法这类方法的代表是刚性支承连续梁法和零位移法零位移法以结构在恒载作用下梁的节点位移为零作为优化目标对于支架上一次落架的斜拉桥 其结果与刚性支承连续梁法几乎一致 梁的EA 悬拼结构或悬浇的结构 零位移法是没有意义的 2 2斜拉桥索力优化方法评述 续 2 斜拉索力的无约束优化法典型例子是弯曲能量最小法和弯矩最小法弯曲能量最小法 用结构的弯曲应变能作为目标函数弯矩最小法 以弯矩平方和作为目标函数 2 2斜拉桥索力优化方法评述 续 3 索力的有约束

7、优化典型例子 用索量最小法和最大偏差最小法用索量最小法 用斜拉桥索的用量 张拉力乘索长 作为目标函数 用关心截面内力 位移期望值范围作为约束条件 最大偏差最小法 将可行域中参量与期望值的偏差作为目标函数 使最大偏差达到最小 2 2斜拉桥索力优化方法评述 续 斜拉桥受力性能的好坏要根据实际结构来评价 并不能用单一的目标函数来统一表示工程界期望在斜拉桥索力优化过程中 既能计入各种因素的影响 又能分别得到不同目标函数的优化结果 供设计者进行比选下面通过调值计算原理 介绍一种具备这种功能的索力优化方法 2 3索力优化的影响矩阵法 1 成桥态的索力优化为了方便讨论 先以弯曲能量最小为目标函数推导索力优化

8、的影响矩阵法 再通过讨论来认识这种方法对多种目标函数索力优化的统一性结构的弯曲应变能可写成 13 5 2 3索力优化的影响矩阵法 续 对于离散的杆系结构可写成 式中 m是结构单元总数 Li Ei Ii分别表示i号单元的杆件长度 材料弹性模量和截面惯矩 分别表示单元左 右端弯矩 将式 13 6 改写成 T B T B 式中 分别是左 右端弯矩向量 B为系数矩阵 13 6 13 7 2 3索力优化的影响矩阵法 续 令调索前左 右端弯矩向量分别为 改变索力的施调向量为 T 则调索后弯矩向量为 式中 CL CR 分别为索力对左 右端弯矩的影响矩阵 将式 13 9 代入 13 7 得 i 1 2 m B

9、 13 9 13 8 2 3索力优化的影响矩阵法 续 U C0 T B CL T T T CL T B T T CL T B CL T T B CR T T T CR T B T T CR T B CR T 式中 C0是与 T 无关的常数 要使索力调整后结构应变能最小 则 i 1 2 l 式 13 10 代入 13 11 并写成矩阵形式 CL T B CL CR T B CR T CR T B CL T B 13 10 13 11 13 12 式 13 12 给出了使整个结构弯曲能量最小时最优索力与弯矩影响矩阵的关系 通过讨论 容易得到如下结论 1 如果取弯曲应变能与拉压应变能之和为目标函数

10、则只要在式 13 12 左 右端增加构件拉压力与索力影响矩阵的关系项 就可得出相应的最优索力方程 2 如果需指定某些关心截面上的内力为定值 索力优化问题变成了求条件极值问题 2 3索力优化的影响矩阵法 续 2 施工阶段的索力优化根据施工逆过程 可以确定满足成桥优化内力状态下 各施工阶段的内力状态和位形 即施工阶段的理想状态但在实际施工时 由于构件自重 刚度 施工精度 索力张拉误差 温差等诸方面因素影响 可使施工阶段结构实际状态严重偏离理想状态 对索力的优化调整是施工阶段纠偏的重要手段 2 3索力优化的影响矩阵法 续 工程中纠偏常用的方法是适当调整索力 使关心截面上控制变量的偏差最大限度地减小

11、施工过程中控制变量以位移为主 成桥状态下控制变量以内力和索力为主设关心截面上n个控制变量的误差向量为 0 通过l根索的索力施调向量 T 作用 使误差向量变为 则 2 3索力优化的影响矩阵法 续 0 C T 13 17 式中 C 为索力对控制变量 的影响矩阵 控制变量可能是由关心截面上的内力 位移 支反力等混合控制变量组成的向量 这些变量的量纲各异 如果直接选用误差向量模的平方作为目标函数 可能导致优化失败 为此 引入相应的权矩阵来体现各控制变量的量纲和其自身的重要性 设权矩阵为 B Diag b11 b22 bnn 取目标函数为 U T B 13 18 则问题变成了式 13 12 的一个特例

12、索力优化方程为 C T B C T C T B 0 2 3索力优化的影响矩阵法 续 13 19 3 算例分析图13 5为塔墩固结 主梁漂浮的斜拉桥计算模型 全桥共7对索 单元编号从43号开始自左向右递增 各构件的材料 几何特性见表13 1 梁受有竖向均布荷载q 50kN m作用 按如下目标调索 2 3索力优化的影响矩阵法 续 2 3索力优化的影响矩阵法 续 1 使塔根弯矩为零 并在索 梁交点处达到零位移 2 用弯矩平方和作为目标函数进行索力优化 3 用弯曲能量作为目标函数进行索力优化 4 对塔的弯曲能量权数增大5倍进行优化 四种情况的索力优化结果列于表13 2 相应的弯矩图见图13 6 a d

13、 2 3索力优化的影响矩阵法 续 计算结果表明 1 指定受力状态的调索只能极端地强制个别截面上受力较好 而无法顾及整体结构的受力 要求塔根弯矩调零 出发点是希望塔内弯曲内力小些 而事实上得到的结果却相反 塔的最大弯矩上移 更不利于设计 最大弯矩达3040kN M 是四种情况中最差的 2 以弯矩向量模的平方为目标函数 与弯曲能量为目标函数优化的结果相比较 后者可以反映刚度对弯矩的权效应 本例塔的刚度较梁大 塔应比梁分担的弯矩为大 计算结果也说明了这一点 但本例并不说明后者结果优于前者 因为塔 梁是不同的受力构件 只有对同种受力状态的变截面构件 才能体现出后者的优越性 2 3索力优化的影响矩阵法

14、续 3 根据构件受力特点调整权量 可以充分发挥各种受力构件的特性 同样以弯曲能量为目标函数 本例情况 通过增大塔的权量 使最大弯矩从2040kN M降低为1210kN M 4 一个反映结构内力状况的目标函数的极值是由结构自身特性和荷载分布情况决定的 结构中一部分构件受力的优化 必然给另一部分构件带来受力的恶化 2 3索力优化的影响矩阵法 续 引起斜拉桥几何非线性的因素主要有三个方面 1 索的垂度影响在分析斜拉桥结构时 常将斜拉索模拟成桁架单元 由此带来了计算模型与实际结构间的误差 通常可用Ernst公式修正索弹性模量 由于Eeq是索端力的函数 导致了索端力与索端位移呈非线性 3 斜拉桥有限位移

15、理论分析 13 20 这是一种将几何非线性问题转化为材料非线性问题的近似方法 当索内应力水平较低时 这种方法精度较低 直接用柔索单元来模拟斜拉索才能得到精确的结果 2 梁柱效应斜拉桥主梁 主塔都工作在压弯状态 引起了梁柱效应 用梁单元分析时 可用稳定函数表示的几何非线性刚度矩阵或一般的几何刚度阵来计入这一效应 前者精度高 但计算工作量大 后者精度稍低 计算工作量小 3 大位移效应由于斜拉桥具有柔性结构特征 外荷载作用下结构变形较大 平衡方程必须建立在变形后的位置上 可以用大位移刚度阵或基于U L列式的有限位移理论计入这一效应 3 斜拉桥有限位移理论分析 续 施工仿真计算主要采用前进分析和倒退分

16、析法前进分析法 以计算斜拉桥施工过程中内力 构形 以保证施工的合理与安全为目的的仿真施工过程的计算方法倒退分析法 将成桥状态作为目标 以计算斜拉桥拉索初张力和拼装节段标高等理想施工参数为目的的逆施工过程的计算方法 3 斜拉桥有限位移理论分析 续 一般描述一座桥的施工过程需要如下信息 总体结构 施工方式 各个施工阶段的荷载 3 斜拉桥有限位移理论分析 续 3 1前进分析 总体结构 桥梁从施工到成桥的过程中 出现的 最大 结构 包括结构离散状态的节点 单元 几何材料 预应力索 构件的徐变 收缩 组合单元及刚臂信息等施工方式信息 各个施工阶段中 在已建结构上新增加或拆除构件的数量及单元 新增加或拆除的支座 新张拉或放张的预应力索数和索号 临时铰的封结或临时固结的释放等施工荷载信息 在已建结构上新增减的荷载 温变 支座变位 预应力张拉力荷载及调值信息 3 1前进分析 续 在前进分析中 由于结构刚度较小 砼构件龄期短 位移大 徐变收缩量大 结构非线性表现突出 所示非线性的求解策略显得尤为重要 3 1前进分析 续 前进分析系统的流程图 倒退分析是以成桥态t t0时刻的内力状态为参考状态 以设计的成

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > PPT模板库 > PPT素材/模板

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号