HFSS学习经验小结.doc

上传人:飞****9 文档编号:134418188 上传时间:2020-06-05 格式:DOC 页数:27 大小:167.50KB
返回 下载 相关 举报
HFSS学习经验小结.doc_第1页
第1页 / 共27页
HFSS学习经验小结.doc_第2页
第2页 / 共27页
HFSS学习经验小结.doc_第3页
第3页 / 共27页
HFSS学习经验小结.doc_第4页
第4页 / 共27页
HFSS学习经验小结.doc_第5页
第5页 / 共27页
点击查看更多>>
资源描述

《HFSS学习经验小结.doc》由会员分享,可在线阅读,更多相关《HFSS学习经验小结.doc(27页珍藏版)》请在金锄头文库上搜索。

1、HFSS学习小结11、 对称的使用对于一个具体的高频电磁场仿真问题,首先应该看看它是否可以采用对称面。这里面的约束主要在几何对称和激励对称要求。如果一个问题的激励并不要求是可改变的,比如全部同相馈电的阵列,此时最好采用对称,甚至可以采用2个对称(E 和H 对称),将可以大大节约时间和设备资源。2、面的使用在实际问题中,有很多结构是可以使用 2 维面来代替的,使用2 维面的好处是可以极大的减少计算量并且结果与使用3 维实体相差无几。例如计算一个微带的分支线耦合器,印制板的微带以及地都可以指定某些面为理想电面代替,这样可以很快的获得所需要的物理尺寸及其性能。再以计算偶极子为例,如果偶极子是以理想导

2、体为材质的圆柱,那么相同的其他条件下其计算时间大约是采用等效面为偶极子的45 倍,由此可见一般。3、Lump Port(集中端口)的使用在 HFSS8 里提供了一种新的激励:Lump Port,这种激励避免了建立一个同轴或者波导激励,从而在一定程度上减轻了模型量,也减少了计算时间。 LumpPort 也可以使用一个面来代表,要注意的是对该Port 的校准线和阻抗线的设置一定要准确,端口在空间上一定要与其他金属(或电面)相接,否则结果极易出错。4、关于辐射边界的问题在不需要求解近(远)场问题时,比如密封在金属箱体里面的滤波器等密闭问题,无需设置辐射边界。在需要求解场分布或者方向图时,必须设置辐射

3、边界。这里有些需要注意的问题:在计算大带宽周期性结构时,比如3 个倍频程,最好分段计算,例如以一个倍频程为一段,也就是说在不同的频段计算时设置不同大小的辐射边界,否则在计算的频率边缘难以保证计算精度;其次,辐射边界的大小和问题的具体形状密切相关,如果物体的外部轮廓可以装在一个球或并不过分的椭球中时,宜采用立方体边界简单有效,如果问题的外部轮廓较为复杂或者椭球2 轴差距太大,以采用相似形边界或圆柱边界,对于辐射问题,如果估计问题的增益较低(比如2dB),那么边界宜采用球形,此时为了得到结果准确也只好牺牲时间了;另在 HFSS 8 中提供了一种新的吸收边界PML 边界条件,对于这种边界,笔者并不是

4、很满意,尽管其有效距离为八分之一个中心波长是老边界的一半,可以减少计算量,然而这种边界由程序自己生成,为一个立方体的复杂结构,对于一些特殊的复杂问题,这种边界内部有很多的空间是无用的,此时还不如使用老边界灵活。5、关于开孔有些问题需要在壁上开孔,此时可以采用2 种办法,其一是老老实实的在模型上挖空;其二是采用H/Natrue 边界条件,通常,如果是在面上开孔,将会采用后者,简单,便于修改。6、关于网格划分当模型建立好了之后,进入计算模块,第一步是给问题划分网格。对于一般问题,让软件自动划分比较省心,但对大型问题和复杂问题,让软件自己划分可能需要很好的耐性来等待。根据实际经验,在大型模型的结构密

5、集区域或场敏感区域使用人工划分可以得到很好的效果,有些问题的计算结果开始表现为收敛,但进一步提高精度,却又反弹,问题就在于开始时场敏感区域的网格划分不够仔细,导致计算结果的偏差。7、关于所需要的精度计算问题时,一般需要给定一个收敛精度和计算次数以避免程序“陷入计算而无法自拔”,当对模型熟悉后,可以单单靠给定次数。在问题之初,建议的计算精度不要太高,实际中曾见到有操作者将问题的S 参数精度设定为0.00001,其实这是完全没有必要的,一般S 参数的精度设定为0.02 左右就已经可以满足绝大部分问题的需要(此时应该注意有无收敛反弹的情况)。如果是计算次数,对于密闭问题,建议是设定为812 次,对于

6、辐射问题,一般计算68 次左右即可观察结果,如果不够再决定是否继续计算。8、关于扫描HFSS 提供一个扫描功能,分3 种方式:快速、离散和插值。其中离散扫描只保留最后一个频点的场结果,其计算时间是单个频点计算时间之和;对快速扫描,将可以得到所计算的频率范围内的所有频率场结果,但是其计算速度和频点多少关系不大,基本和模型复杂程度正比,有时扫描计算的时间非常长,如果不是特别需要关心所有的场情况,建议选用离散扫描,对于特别巨大的问题,则是以快速扫描为宜。而插值方式比较少用。9、关于问题的规模HFSS 所能计算的问题规模与计算机硬件关系很大,其次是所使用的操作系统。在 HFSS8 里,问题描述矩阵的阶

7、基本和网格数正比,对于四面体上10 万的问题也能游刃有余(只要机器够好),然而这并非是指实际问题的电尺寸,实际上,要精确计算一个计算机网络电缆接头(RJ45)所需要的时间和资源并不比计算一个有一个波长电尺寸的一般辐射问题少多少,所以实际上其计算规模的主要约束是问题的复杂程度,而复杂程度里面包含了电尺寸、结构复杂度等要素。由此提醒我们建模时应该尽量简化模型。一般来说,除了在激励区,当结构电尺寸比二十分之一波长还小时,可以忽略它的存在而不会引入明显的误差,这一点在解决问题之初很有效,可以迅速发现问题的关键;当问题的主要要求满足后,再将模型细化以获得更加精确的结果。HFSS学习小结2已经接触HFSS

8、近两个月了,想用于材料电磁场屏蔽的设计和计算,不知是否可行,now have followed the example _heat sink in the chapter 9.0 _ EMC/EMI in full book 10.0 成功的做出了个结果,现在把看到别人的、自己知道的做一下总结:The main process : building 3D solid modeling; set boundaries and excitations ; analyze the result Before we build the modeling, we should think about w

9、hat kind of method we use, there are three kinds of solution type: driven model; driven terminal; eigenmode 模式驱动(Driven)-计算以模式为基础的S参数.根据波导模式的入射和反射功率表示S参数矩阵的解,波导,天线等用这个模式多终端驱动(Driven Terminal)-计算以终端为基础的多导体传输线端口的S参数。此时,根据传输线终端的电压和电流表示S参数矩阵的解-微带类用这个比较多! 本征模(Eignemode)-计算某一结构的本征模式或谐振.本征模解算器可以求出该结构的谐振频率以

10、及这些谐振频率下的场模式! Eignemode solver does not use ports and dont support radiation boundaries. After launching the software, we should set tool options, included HFSS option and 3D modeler option Select the menu item tool optionwe can see those options Software will open a project by default First step is

11、 select solution typeHFSSsolution type Set the units3D modelerunits 单位可以在其它状态下改变3D modeler包括了与模型有关的操作和设置Set default material在set 一次后的情况下其后建立的modeler 都是在此material 下的 在default 的情况下 history 的列表中按材料的种类进行分类建立模型过程中使用相对坐标会很方便, 3D modelercoordinate system create relative CS Offset , 在建模过程中可能要使用很多相对坐标,在set相对

12、坐标的时候,offset是相对于当前CS的位移,在3D Modelercoordinate systemset working CS 可以选择使某个坐标为当前工作坐标,在history 的coordinate system 的列表中显示所有的坐标系,当前工作坐标将有个W的标记。在模型复杂的时候需要用适当的方式进行选择某些面、体进行编辑,在edit 里提供了多种方式,常用 editselectby name 在选择后可以set boundary 等一些操作同样可以在history里双击某项名字从而edit property,设置好boundary和excitation 就可以进行analysis

13、 setup HFSSanalysis setupadd solution setup 其中包括最大迭代次数maximum number of pass每两步迭代之间的误差,看来上的数值分析还是有用的在analyze 之前运行一下model validation select the menu item HFSSvalidation check 运行check 以后虽然没出现问题,也不能说明,模型正确,一定能计算出结果,只是说明完成了建模过程中的每个步骤,由message 窗口,得到信息,以便修改Analyze HFSSanalyze all 在message 窗口中可以知道analyze 的

14、完成情况;从solution data 中有三个标签,其中主要可以从convergence中看出迭代计算的收敛情况;同样可以看到场的分布状况 首先选择model 某个部位,HFSSfieldsfields从这个菜单中可以选择要显示电场或者磁场例子中选择的是地平面 editselectby nameground 显示某个部位的场分布HFSSfieldsfields 可以看到关于显示电场 磁场的选择下图是heat sink 的 ground configuration 的ground 的电场分布 HFSS学习小结3Ansoft HFSS 边界条件 讲解这一章主要介绍使用边界条件的基本知识。边界条件

15、能够使你能够控制物体之间平面、表面或交界面处的特性。边界条件对理解麦克斯韦方程是非常重要的同时也是求解麦克斯韦方程的基础。2.1为什么边界条件很重要用Ansoft HFSS求解的波动方程是由微分形式的麦克斯韦方程推导出来的。在这些场矢量和它们的导数是都单值、有界而且沿空间连续分布的假设下,这些表达式才可以使用。在边界和场源处,场是不连续的,场的导数变得没有意义。因此,边界条件确定了跨越不连续边界处场的性质。作为一个 Ansoft HSS 用户你必须时刻都意识到由边界条件确定场的假设。由于边界条件对场有制约作用的假设,我们可以确定对仿真哪些边界条件是合适的。对边界条件的不恰当使用将导致矛盾的结果

16、。当边界条件被正确使用时,边界条件能够成功地用于简化模型的复杂性。事实上,Ansoft HSS 能够自动地使用边界条件来简化模型的复杂性。对于无源RF 器件来说,Ansoft HSS 可以被认为是一个虚拟的原型世界。与边界为无限空间的真实世界不同,虚拟原型世界被做成有限的。为了获得这个有限空间, Ansoft HSS使用了背景或包围几何模型的外部边界条件。模型的复杂性通常直接与求解问题所需的时间和计算机硬件资源直接联系。在任何可以提高计算机的硬件资源性能的时候,提高计算机资源的性能对计算都是有利的。2.2一般边界条件有三种类型的边界条件。第一种边界条件的头两个是多数使用者有责任确定的边界或确保它们被正确的定义。材料边界条件对用户是非常明确的。1、激励源

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号