蛮力法动态规划法贪心法求解背包问题.doc

上传人:bao****ty 文档编号:132310258 上传时间:2020-05-14 格式:DOC 页数:28 大小:202KB
返回 下载 相关 举报
蛮力法动态规划法贪心法求解背包问题.doc_第1页
第1页 / 共28页
蛮力法动态规划法贪心法求解背包问题.doc_第2页
第2页 / 共28页
蛮力法动态规划法贪心法求解背包问题.doc_第3页
第3页 / 共28页
蛮力法动态规划法贪心法求解背包问题.doc_第4页
第4页 / 共28页
蛮力法动态规划法贪心法求解背包问题.doc_第5页
第5页 / 共28页
点击查看更多>>
资源描述

《蛮力法动态规划法贪心法求解背包问题.doc》由会员分享,可在线阅读,更多相关《蛮力法动态规划法贪心法求解背包问题.doc(28页珍藏版)》请在金锄头文库上搜索。

1、实验名称:用蛮力法、动态规划法和贪心法求0/1背包问题组的编号:28 作者姓名 : xxx xxx xxx算法设计与分析完成日期:2013年9月22日星期日 目录第一章:简介1第二章:算法规范2数据结构2伪代码3第3章 :算法测试4 蛮力法4动态规划5贪心法5第四章:分析讨论6算法分析6时间复杂度分析16附录17声明17第1章 :简介 问题的描述:0/1背包问题是给定n个重量为w1, w2, ,wn、价值为v1, v2, ,vn的物品和一个容量为C的背包,求这些物品中的一个最有价值的子集,并且要能够装到背包中。在0/1背包问题中,物品i或者被装入背包,或者不被装入背包,设xi表示物品i装入背包

2、的情况,则当xi=0时,表示物品i没有被装入背包,xi=1时,表示物品i被装入背包。根据问题的要求,有如下约束条件和目标函数: (式1)(式2)于是,问题归结为寻找一个满足约束条件式1,并使目标函数式2达到最大的解向量X=(x1, x2, , xn)。背包的数据结构的设计:typedef struct objectint n;/物品的编号int w;/物品的重量int v;/物品的价值wup;wup wpN;/物品的数组,N为物品的个数int c;/背包的总重量 第二章:算法规范数据结构:0/1背包问题是给定n个重量为w1, w2, ,wn、价值为v1, v2, ,vn的物品和一个容量为C的背

3、包,求这些物品中的一个最有价值的子集,并且要能够装到背包中,在0/1背包问题中,物品i或者被装入背包,或者不被装入背包,设xi表示物品i装入背包的情况,则当xi=0时,表示物品i没有被装入背包,xi=1时,表示物品i被装入背包。所以,我们用了数组,函数作为主要的数据结构。用蛮力法、动态规划法和贪心法求解0-1背包问题的算法设计对比与分析。伪代码如下所示一、蛮力法1,1.1,定义物品结构1.2 input 物品编号,重量,价值2,蛮力法产生子集3,判断子集的可行性4从可行解中找出最优解5输出最优解二、动态规划法1.1 定义物品结构wup1.2定义物品输入函数inputwp1.3定义物品输出函数o

4、utputwp2,定义函数findmaxvalue3,输入物品4,调用findmaxvalue5,输出结果三、贪心法1.1 定义物品结构wup1.2 输入物品2,对v/w排序3,输出物品4,选择物品5,计算物品总价值6,输出物品总价值和最优解 第三章:测试结果1. 蛮力法2. 动态规划法3.贪心法这个结果没有运行出来,请老师原谅,谢谢。第四章:分析和讨论(一)算法思想分析:1蛮力法:蛮力法是一种简单直接的解决问题的方法,常常直接基于问题的描述和所涉及的概念定义。蛮力法的关键是依次处理所有的元素。用蛮力法解决0/1背包问题,需要考虑给定n个物品集合的所有子集,找出所有可能的子集(总重量不超过背包

5、容量的子集),计算每个子集的总价值,然后在他们中找到价值最大的子集。所以蛮力法解0/1背包问题的关键是如何求n个物品集合的所有子集,n个物品的子集有2的n次方个,用一个2的n次方行n列的数组保存生成的子集,以下是生成子集的算法:void force(int a4)/蛮力法产生4个物品的子集 int i,j; int n=16; int m,t; for(i=0;i=0;j-) m=t%2; aij=m; t=t/2; for(i=0;i16;i+)/输出保存子集的二维数组 for(j=0;j4;j+) printf(%d ,aij); printf(n); 以下要依次判断每个子集的可行性,找出

6、可行解:void panduan(int a4,int cw)/判断每个子集的可行性,如果可行则计算其价值存入数组cw,不可行则存入0 int i,j; int n=16; int sw,sv; for(i=0;i16;i+) sw=0; sv=0; for(j=0;j4;j+) sw=sw+wpj.w*aij; sv=sv+wpj.v*aij; if(sw=c) cwi=sv; else cwi=0; 在可行解中找出最优解,即找出可行解中满足目标函数的最优解。以下是找出最优解的算法:int findmax(int x164,int cv)/可行解保存在数组cv中,最优解就是x数组中某行的元素

7、值相加得到的最大值int max;int i,j;max=0;for(i=0;imax)max=cvi; j=i;printf(n最好的组合方案是:);for(i=0;i4;i+)printf(%d ,xji);return max;2动态规划法:动态规划法将待求解问题分解成若干个相互重叠的子问题,每个子问题对应决策过程的一个阶段,一般来说,子问题的重叠关系表现在对给定问题求解的递推关系(也就是动态规划函数)中,将子问题的解求解一次并填入表中,当需要再次求解此子问题时,可以通过查表获得该子问题的解而不用再次求解,从而避免了大量重复计算。动态规划法设计算法一般分成三个阶段:(1)分段:将原问题分

8、解为若干个相互重叠的子问题;(2)分析:分析问题是否满足最优性原理,找出动态规划函数的递推式;(3)求解:利用递推式自底向上计算,实现动态规划过程。 0/1背包问题可以看作是决策一个序列(x1, x2, , xn),对任一变量xi的决策是决定xi=1还是xi=0。在对xi-1决策后,已确定了(x1, , xi-1),在决策xi时,问题处于下列两种状态之一:(1)背包容量不足以装入物品i,则xi=0,背包不增加价值;(2)背包容量可以装入物品i,则xi=1,背包的价值增加了vi。 这两种情况下背包价值的最大者应该是对xi决策后的背包价值。令V(i, j)表示在前i(1in)个物品中能够装入容量为

9、j(1jC)的背包中的物品的最大值,则可以得到如下动态规划函数: V(i, 0)= V(0, j)=0 (式3) (式4)式3表明:把前面i个物品装入容量为0的背包和把0个物品装入容量为j的背包,得到的价值均为0。式4的第一个式子表明:如果第i个物品的重量大于背包的容量,则装入前i个物品得到的最大价值和装入前i-1个物品得到的最大价值是相同的,即物品i不能装入背包;第二个式子表明:如果第i个物品的重量小于背包的容量,则会有以下两种情况:(1)如果把第i个物品装入背包,则背包中物品的价值等于把前i-1个物品装入容量为j-wi的背包中的价值加上第i个物品的价值vi;(2)如果第i个物品没有装入背包

10、,则背包中物品的价值就等于把前i-1个物品装入容量为j的背包中所取得的价值。显然,取二者中价值较大者作为把前i个物品装入容量为j的背包中的最优解。 以下是动态规划法求解背包问题的算法:int findmaxvalue(wup *p,int x)/x数组用来存放可行解,p是指向存放物品数组的指针 int i,j;int maxvalue;int valueN+1C+1;for(j=0;j=C;j+)value0j=0; /初始化第0行for(i=0;i=N;i+)valuei0=0;/初始化第0列/计算数组value中各元素的值for(i=1;i=N;i+,p+)for(j=1;jw j)val

11、ueij=valuei-1j;elsevalueij=max(valuei-1j,(valuei-1j-p-w+p-v);/max函数求两个数当中的大者/逆推求解j=C;for(i=N;i0;i-)if(valueijvaluei-1j)xi-1=1;/是否被选中的向量的下标也是从0开始j=j-wpi-1.w;/存放物品的下标从0开始else xi-1=0;maxvalue=valueNC;/最大值return maxvalue;3贪心法: 贪心法在解决问题的策略上目光短浅,只根据当前已有的信息就做出选择,而且一旦做出了选择,不管将来有什么结果,这个选择都不会改变。换言之,贪心法并不是从整体最

12、优考虑,它所做出的选择只是在某种意义上的局部最优。 这种局部最优选择并不总能获得整体最优解(Optimal Solution),但通常能获得近似最优解(Near-Optimal Solution)。贪心法求解的问题的特征:(1)最优子结构性质 当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质,也称此问题满足最优性原理。(2)贪心选择性质 所谓贪心选择性质是指问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来得到。用贪心法求解问题应该考虑如下几个方面:(1)候选集合C:为了构造问题的解决方案,有一个候选集合C作为问题的可能解,即问题的最终解均取自于候选集合C。例如,在付款问题中,各种面值的货币构成候选集合。(2)解集合S:随着贪心选择的进行,解集合S不断扩展,直到构成一个满足问题的完整解。例如,在付款问题中,已付出的货币构成解集合。(3)解决函数solution:检查解集合S是否构成问题的完整解。例如,在付款问题中,解决函数是已付出的货币金额恰好等于应付款。 (4)选择函数sel

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 其它相关文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号