制冷压缩机第四章.

上传人:我** 文档编号:117167864 上传时间:2019-11-18 格式:PPT 页数:30 大小:812.50KB
返回 下载 相关 举报
制冷压缩机第四章._第1页
第1页 / 共30页
制冷压缩机第四章._第2页
第2页 / 共30页
制冷压缩机第四章._第3页
第3页 / 共30页
制冷压缩机第四章._第4页
第4页 / 共30页
制冷压缩机第四章._第5页
第5页 / 共30页
点击查看更多>>
资源描述

《制冷压缩机第四章.》由会员分享,可在线阅读,更多相关《制冷压缩机第四章.(30页珍藏版)》请在金锄头文库上搜索。

1、第四章 滚动转子式制冷压缩机 第四章 第一节 工作过程和结构特点 第四章 第四章 汽缸 偏心轴 滚动转子 滑片 排气阀 弹簧 外壳等 一、概述 结构组成 第四章 转子沿气缸内壁滚动,与气缸间 形成一个月牙形的工作腔,滑片 靠弹簧的作用力使其端部与转子 紧密接触,将月牙形工作腔分隔 为两部分,滑片随转子的滚动沿 滑片槽道作往复运动。 端盖与气缸内壁、转子外壁、滑 片及转子与气缸切线(点)构成封 闭的气缸容积,即基元容积。 基元容积大小随转子转角变化, 是转子转角的函数。容积内气 体压力随基元容积大小而改变, 从而完成压缩机的工作过程。 基元容积 第四章 利用一个偏心圆筒形转 子在气缸内转动改变工

2、作 容积,实现气体的吸入、 压缩和排出。 工作原理 第四章 二、压缩机工作过程 = =2+ = 2 =4- =2+ =4- 再度压缩 :转子转角 几个特征角 吸气孔口后边缘角 (顺旋转方向)可构成吸气封闭容 积=时吸气开始 ,大小影响吸气开始 前吸气腔中的气体膨胀,造成过度低压或真 空。 吸气孔口前边缘角 造成在压缩过程开始前吸入的气体 向吸气口回流,导致输气量下降。为减少 的不利影响,通常3035。 排气孔口后边缘角 影响余隙容积的大小,通常30 35。 排气孔口前边缘角 构成排气封闭容积,造成气体再度压 缩。 排气开始角 开始排气时基元容积内气体压力略 高于排气管中压力,以克服排气阀阻力顶

3、开 排气阀。 第四章 过过程转转角压压力变变化基元容积积 准备过 程0 1-2,从最大降至0 0 吸气过程 2p3-4, Ps0 ab, 从0升至 Vmax 气体倒流 2p 2p + 4-5,Ps0bb,减少 V 压缩过 程 2p + 2p + 5-6,从Ps0升至 Pdk b c 排气过程 2p + 4p- g 6-7 Pdkcd 余隙容积气 体膨胀过 程 4p-g 4p 7-8,Pdk降至Ps0 再压缩过 程 4p 4p 8-1, 压力急剧 上升,超过 Pdk 工作过程 第四章 工作容积与气体压力随转角的变化 气体压力-转角曲线 基元容积-转角曲线 图4-3 Ps0 Pdk Vmax 2p

4、 + vd ,4p - g 第四章 工作过程总结 气体的吸气、压缩、排气过程是在转子的两转中完成,但 因转子切点与滑片两侧的两个腔同时进行吸气、压缩、排 气的过程,故可以认为压缩机一个工作循环仍是在一转中 完成的。 特征角、对压缩机的性能有影响。和角分别决 定吸、排气封闭容积的大小;角直接影响排气量,它的 存在使达最大基元面积( =2)后,基元面积在与吸气孔口 相连通的情况下再次缩小(=22+),产生吸气倒流; 角表示余隙容积的大小。在结构设计可能的前提下,、 、 应尽可能小。 第四章 主要结构形式: 小型全封闭式 卧式:主要用于冰箱、冷柜 立式:主要用于空调器 三、主要结构形式及特点 立式全

5、封闭滚动转子式压缩机结构 吸气由机壳下部接管直接进入气缸,吸气管上装有气液 分离器,润滑油经下部弯管小孔被吸入气缸。高压气体直 接排入机壳中。外壳还装有过载保护器,内部无减振机构 ,润滑系统靠离心和压差供油。 第四章 优点: 结构简单,零部件几何形状简单,便于加工及流 水线生产; 体积小,质量轻,与同工况往复式比较,体积、 重量可减少4050; 易损件少,运转可靠; 效率高, 因为没有吸气阀故流动阻力小,且吸气 过热小,在制冷量为3kW以下场合使用时尤为突出。 缺点: 只利用了气缸的月牙形空间,气缸容积利用率低 ; 滑片作往复运动,依然是易损零件; 存在不平衡的旋转质量,需要平衡质量来平衡。

6、特点 第四章 四、目前发展趋势 变频压缩机的发展 采用变频调速技术进行能量调节,使制冷量与系统负荷协调变化,使机组 在各种负荷条件下都具有较高能效比。具有节能、舒适、启动快速、温控精度 高、易于实现自动控制等优点。(图4-6由交流变频式电动机驱动曲轴旋转, 依靠电源频率变化使电动机转速变化,达到连续调节制冷能力的目的。) 双缸滚动转子式压缩机的发展 双缸滚动转子式压缩机的两个气缸相差180对称布置,可使负荷扭矩变化 趋于平缓,广泛用于较大功率场合。(图4-8) 提高压缩机的经济性及可靠性 借助计算机对压缩机工作过程进行性能仿真,对主要部件如轴承、滑片、 滚动转子、排气阀等结构进行特性分析及噪声

7、、振动的仿真,可对压缩机的经 济性和可靠性、噪声和振动进行预测,对满足各种要求的滚动转子式压缩机进 行优化设计。 对降低噪声提出更高要求 减少曲轴及轴承的振动,改进压缩机与机壳的连接系统,开发各种新型消 声结构和排气阀等。 第二节 主要热力性能参数 第四章 第四章 输气量及其影响因素 理论输气量(汽缸工作容积与转速的乘积) 实际输气量 (m3/h) (m3/h) 容积效率表征汽缸工作容积的利用程度,反映由于余隙容积、 吸气阻力、吸气加热、气体泄漏和吸气回流造成的容积损失,其 值大于往复式压缩机。 (回流系数) 第四章 影响输气量的因素 容积系数v 余隙容积的组成: 转子与气缸的切点T 达到4p

8、-g位置时,存有高压气体的气缸容积 Vc; 排气阀下方排气孔的容积; 排气孔入口处气缸被削去部分的容积。 压力系数p :表征吸气压力损失对输气量造成的影响; 温度系数T :反映由于吸入气体被加热造成输气量的减少; 泄漏系数f :表征气缸中气体泄漏对输气量造成的影响; 回流系数 h :回流使输气量减少。 第四节 输气量调节 第四章 第四章 一、变频调节 二、旁通调节 三、多机并联调节 输气量调节方法 第四章 一、 变频调节 具有节能、舒适、启动快 速、温控精度高和易于实 现自动化等优点。 启动时压缩机高速运转, 快速接近暖房设定温度, 当室内温度趋向适合温度 时,压缩机低速运转,可 减少开停次数

9、,并使室温 变化很小,达到既节能又 舒适的目的。 包括交流变频器调速和 直流变频器调速。 采用变频调节的热泵空调机运行特性 第四章 变频器是使交流电频率发生连续变化的装置。它首先 通过整流器将交流电转换为直流电,然后再通过逆变器 将直流电经控制电路转换成频率可变的交流电; 变频器有电流源型和电压源型,又根据控制电路调制 方式分为脉宽调制方式(PWM方式)和脉幅调制方式 (PAM方式),当前空调器用制冷压缩机的电动机变频 器多采用电压源型PWM方式。 1、 交流变频器调速 交流变频器 第四章 交流变频器的工作过程 温度传感器测出房间温度 及换热器温度送入微机,经 运算后将信息送入数字信号 控制电

10、路进行波形成型处理 ,然后送入逆变器,将由整 流器送来的直流电转换为频 率可变的交流电,去驱动感 应电动机。 当传感器测出的冷房温度 大于设定温度,则经微机运 算再通过数控电路,使逆变 器输出的交流电频率升高, 电动机转速增加,制冷量增 大,冷房温度降低至设定值 ,完成能量调节。 第四章 交流变频器调速 感应电动机的转速n与交流电输入频率的关系为: 假定s为常量,改变交流电的频率就可以改变电动机转速,压缩机的输 气量与电动机的转速成正比,若交流电频率连续变化,则转速连续变化,从 而实现了输气量的连续调节、达到了制冷量连续调节的目的。该方法空调工 作功率的变化呈阶梯性变化,一般只分为几档。 第四

11、章 2、 直流变频器调速 采用直流变频器将50Hz或60Hz固定频率的交流电转变成直流电,对直流电动机 进行调速,省却了交流变频器又将直流变成交流的麻烦,使电器元件减少; 直流变频呈线性平滑的变化,空调工作时可在功率范围内任意递增或递减,空 调功率可随温度出现精确变化,故更省电; 直流变频压缩机的电动机转子采用稀土永磁材料制成(永磁无刷直流电动机) ,定子产生旋转磁场与转子永磁磁场直接作用,实现压缩机运转,可通过改变 供给电机的直流电压来改变电机转速(调整电枢电压法),为得到可调整的直 流电源,广泛采用脉宽调制系统(PWM系统)。 直流变频压缩机不存在定子旋转磁场对转子的电磁感应作用,克服了交

12、流变频 压缩机的电磁噪音与转子损耗,具有比交流变频压缩机效率高与噪音低特点, 直流变频压缩机效率比交流变频压缩机高10%-30%,噪音低510 dB 。 第四章 无刷直流电动机由直流电源供电,在结构上没有电刷和 换向器,其绕组里的电流变化(通、断和方向)是通过电 子换向器(控制器)实现的,电流以方波形式变化。 永磁无刷直流电动机的电动机转子采用稀土永磁材料制 成,其结构形式与无刷直流电动机一样,但其绕组电流按 正弦规律变化。 无刷直流电动机 第四章 无刷直流电动机的工作原理 第四章 3、 变频调节给压缩机带来的问题 压缩机高速运转时: 运动部件的磨损增加; 气体流经排气阀的流动损失增加,并导致

13、排气阀片产生延 迟关闭,阀片寿命降低; 润滑油循环率随转速增加而增加; 各种杂质随润滑油进入运动部件间隙中,引起部件损伤; 噪声增加。 压缩机低速运转时:导致泄漏量增加 压缩机振动随转速变化加剧 第四章 1、单缸机旁通调节 在压缩腔设置旁通孔D,使一部分被压缩气体返回吸气腔,其输气量 调节范围一般在100%70%,由旁通孔位置决定。 2、双缸机旁通调节 电磁控制阀10控制左缸中被压缩的气体引入右缸,使卸载阀13动作, 关闭右缸吸气孔口8,右缸进入空运转,压缩机输气量减少一半,达到调 节负荷的目的。 二、 旁通调节 第四章 当需要的制冷量(或制热量)变化范围较大时, 采用多台压缩机并联进行制冷量

14、调节是比较高效、 经济的调节方式,并且可以减少单台压缩机的停机 次数,延长压缩机的寿命; 多机并联运行按制冷量大小的需要,可以只运行 一台,也可以多台全部同时运行。 三、多机并联调节 第四章 双作用滚动活塞压缩机 传统的滚动活塞压缩机压缩转矩波动大,导致 机器振动大、压缩机配管容易损坏。为解决这 一问题,提出了气缸内具有两个工作室的双作 用滚动活塞压缩机。 q 工作原理 双作用滚动活塞压缩机是在普通滚动活塞 压缩机滑板的对称位置上,再增加一个滑 板(包括滑板弹簧)。每个滑板的两侧都 开有吸、排气孔口。 两个滑板将气缸与滚动活塞间的月牙空间 分为三部分,即有三个工作腔:吸气腔、 压缩腔、中间腔。

15、 针对每个工作腔而言,主轴旋转一圈半才 完成一个完整的工作循环;对整个压缩机 来说,三个工作腔同时工作,主轴每转一 转排气两次。 第四章 摆动转子压缩机的工作原理 滚动活塞与滑板做成一整 体零件,称为摆动转子,安 装在气缸内。 摆动转子由滚环和摆杆两 部分组成,滚环套在主轴的 偏心轮上,主轴的旋转中心 与气缸的几何中心重合; 摆杆在圆柱形导轨中能自 由地上下滑动,并随导轨左 右摆动。当滚动活塞在汽缸 内作回转运动时,摆杆作左 右摇摆运动。 第四章 摆动转子压缩机的特点 q 摆动转子压缩机将滚环和摆杆做成一体后,使 二者之间不存在密封和润滑问题,也不需设滑板 弹簧。适合用于使用替代工质的制冷系统,因为 与HFC配用的酯类 油的润滑性能低于矿物油; q 滚环和摆杆做成一体后,摆杆变成两侧支撑, 可以承受较大的压力差;同时导轨又能转动,减 小了摆杆的侧向力,并消除了滚环和摆杆间的摩 擦磨损,使压缩机的机械效率有所提高; q 摆动转子的受力不会因气缸直径或主轴偏心距 的增大而增加,故可采用较小的气缸高度,使其 内部最严重的泄漏部位-滚环与气缸切点处径向 间隙的面积减小,即摆动转子压缩机结构本身有 利于减少内部泄漏,提高了容积效率; q 摆动转子加工很困难,导向部分的加工要求很 精密,滚环与偏心轮间难以实现油膜

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号