基于单片机的恒温箱温度控制系统毕业论文带pid控制.

上传人:我** 文档编号:113828945 上传时间:2019-11-09 格式:DOC 页数:46 大小:4.66MB
返回 下载 相关 举报
基于单片机的恒温箱温度控制系统毕业论文带pid控制._第1页
第1页 / 共46页
基于单片机的恒温箱温度控制系统毕业论文带pid控制._第2页
第2页 / 共46页
基于单片机的恒温箱温度控制系统毕业论文带pid控制._第3页
第3页 / 共46页
基于单片机的恒温箱温度控制系统毕业论文带pid控制._第4页
第4页 / 共46页
基于单片机的恒温箱温度控制系统毕业论文带pid控制._第5页
第5页 / 共46页
点击查看更多>>
资源描述

《基于单片机的恒温箱温度控制系统毕业论文带pid控制.》由会员分享,可在线阅读,更多相关《基于单片机的恒温箱温度控制系统毕业论文带pid控制.(46页珍藏版)》请在金锄头文库上搜索。

1、江西理工大学应用科学学院毕业设计第1章 绪 论1.1研究的目的和意义温度是工业生产中主要被控参数之一,温度控制自然是生产的重要控制过程。工业生产中温度很难控制,对于要求严格的的场合,温度过高或过低将严重影响工业生产的产质量及生产效率,降低生产效益。这就需要设计一个良好温度控制器,随时向用户显示温度,而且能够较好控制。单片机具有和普通计算机类似的强大数据处理能力,结合PID,程序控制可大大提高控制效力,提高生产效益。本文采用单片机STC89C52设计了温度实时测量及控制系统。单片机STC89C52 能够根据温度传感器DS18B20所采集的温度在LCD1602液晶屏上实时显示,通过PID控制从而把

2、温度控制在设定的范围之内。通过本次课程实践,我们更加的明确了单片机的广泛用途和使用方法,以及其工作的原理。1.2国内外发展状况温度控制采用单片机设计的全数字仪表,是常规仪表的升级产品。温度控制的发展引入单片机之后,有可能降低对某些硬件电路的要求,但这绝不是说可以忽略测试电路本身的重要性,尤其是直接获取被测信号的传感器部分,仍应给予充分的重视,有时提高整台仪器的性能的关键仍然在于测试电路,尤其是传感器的改进。现在传感器也正在受着微电子技术的影响,不断发展变化。恒温系统的传递函数事先难以精确获得,因而很难判断哪一种控制方法能够满足系统对控制品质的要求。但从对控制方法的分析来看,PID控制方法最适合

3、本例采用。另一方面,由于可以采用单片机实现控制过程,无论采用上述哪一种控制方法都不会增加系统硬件成本,而只需对软件作相应改变即可实现不同的控制方案。因此本系统可以采用PID的控制方式,以最大限度地满足系统对诸如控制精度、调节时间和超调量等控制品质的要求。现在国内外一般采用经典的温度控制系统。采用模拟温度传感器对加热杯的温度进行采样,通过放大电路变换为 05V 的电压信号,经过A/D 转换,保存在采样值单元;利用键盘输入设定温度,经温度标度转换转化成二进制数,保存在片内设定值单元;然后调显示子程序,多次显示设定温度和采样温度,再把采样值与设定值进行 PID 运算得出控制量,用其去调节可控硅触发端

4、的通断,实现对电阻丝加热时间的控制, 以此来调节温度使其基本保持恒定。1.3温度控制系统的设计内容本系统从硬件和软件两方面来讲述恒温箱温度自动控制过程,在控制过程中主要应用STC89C52、LCD1602液晶显示器,而主要是通过 DS18B20数字温度传感器采集环境温度,以单片机为核心控制部件,并通过LCD1602显示实时温度的一种数字温度计。软件方面采用C语言来进行程序设计,使指令的执行速度快,节省存储空间。而系统的过程则是:首先,通过设置按键,设定恒温运行时的温度值,并且用LCD1602显示这个温度值.然后,在运行过程中将DS18B20采样的温度经过处理后的数字量用LCD1602进行显示,

5、结合PID控制得出的信号传给单片机,用单片机的相应引脚来控制加热器,进行加热或停止加热,直到能在规定的温度下恒温加热,如果温度超过了恒温设定值,用单片机控制制冷片对恒温箱进行降温,最后保证恒温箱在设定的温度下运行。第2章 总体方案设计2.1 方案一测温电路的设计,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 2.2 方案二考虑使用温度传感器,结合单片机电路设计,温度传感器的选择,采用温度芯片DS18B20测量温度,该芯片

6、的物理化学性能很稳定,它能用做工业测温元件,且此元件线性较好。在0-100摄氏度时,最大线性偏差小于1摄氏度。该芯片直接向单片机传输数字信号,便于单片机处理及控制。本制作的最大特点之一是直接采用温度芯片对为温度进行测量,使数据传输和处理简单化,直接读取被测温度值,之后进行转换,依次完成设计要求。比较以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计容易实现,故实际设计中拟采用方案二。电路设计方框图如图2-1所示,它主要由五部分组成:控制部分主芯片采用单片机STC89C52;显示部分采用LCD1602液晶显示;温度设定部分采用按键设定;温度温度采集部分采用DS18B20温度传感器;加温

7、部分采用光电可控硅MOC3061控制制大功率加热器;降温部分采用继电器控制TEC1-12706半导体制冷片。STC89C52晶振电路复位电路按键电路DS18B20温度采集LCD1602显示电路光电双向可控硅控制加热器工作半 导 体制冷片工作图21 温度控制系统的总体设计方案第3章 温度控制系统的器件和模块选用3.1单片机的选择3.1.1 STC89C52简介STC89C52单片机是宏晶科技推出的新一代高速/低功耗/超强抗干扰的单片机,指令代码完全兼容传统8051单片机,12时钟/机器周期和6时钟/机器周期可以任意选择。主要特性如下:(1)增强型8051单片机,6时钟/机器周期和12时钟/机器周

8、期可以任意选择,指令代码完全兼容传统8051。 (2)工作电压:5.5V3.3V(5V单片机)/3.8V2.0V(3V单片机)。(3)工作频率范围:040MHz,相当于普通8051的080MHz,实际工作频率可达48MHz。(4)用户应用程序空间为8K字节,片上集成512字节RAM。(5)通用I/O口(32个),复位后为:P1/P2/P3/P4是准双向口/弱上拉,P0口是漏极开路输出,作为总线扩展用时,不用加上拉电阻,作为I/O口用时,需加上拉电阻。(6)具有EEPROM功能,具有看门狗功能。(7)共3个16位定时器/计数器,即定时器T0、T1、T2。(8)外部中断4路,下降沿中断或低电平触发

9、电路,Power Down模式可由外部中断低电平触发中断方式唤醒。(9)通用异步串行口(UART),还可用定时器软件实现多个UART。(10)工作温度范围:-40+85(工业级)/075(商业级)。3.1.2 STC89C52单片机的工作模式(1)掉电模式:典型功耗0.1A,可由外部中断唤醒,中断返回后,继续执行原程序。(2)空闲模式:典型功耗2mA;正常工作模式:典型功耗4Ma7mA。(3)掉电模式可由外部中断唤醒,适用于水表、气表等电池供电系统及便携设备。3.1.3 单片机最小系统结构本系统以STC89C52单片机为核心,本系统选用11.05926MHZ的晶振,使得单片机有合理的运行速度,

10、复位电路为按键高电平复位。STC89C52单片机最小系统电路设计如图3-1所示。图3-1 单片机最小系统框3.1.4 STC89C52的引脚说明STC89C52的引脚图如图3-2:图32 STC89C52引脚图VCC(40引脚):电源电压。VSS(20引脚):接地。P0端口(P0.0P0.7,3932引脚):P0口是一个漏极开路的8位双向I/O口。作为输出端口,每个引脚能驱动8个TTL负载,对端口P0写入“1”时,可以作为高阻抗输入。在访问外部程序和数据存储器时,P0口也可以提供低8位地址和8位数据的复用总线。此时,P0口内部上拉电阻有效。在Flash ROM编程时,P0端口接收指令字节;而在

11、校验程序时,则输出指令字节。验证时,要求外接上拉电阻。P1端口(P1.0P1.7,18引脚):P1口是一个带内部上拉电阻的8位双向I/O口。P1的输出缓冲器可驱动(吸收或者输出电流方式)4个TTL输入。对端口写入1时,通过内部的上拉电阻把端口拉到高电位,这是可用作输入口。P1口作输入口使用时,因为有内部上拉电阻,那些被外部拉低的引脚会输出一个电流。此外,P1.0和P1.1还可以作为定时器/计数器2的外部技术输入(P1.0/T2)和定时器/计数器2的触发输入(P1.1/T2EX),具体参见表3-1。在对Flash ROM编程和程序校验时,P1接收低8位地址。表3-1 P1.0和P1.1引脚复用功

12、能引脚号功能特性P1.0T2(定时器/计数器2外部计数输入),时钟输出P1.1T2EX(定时器/计数器2捕获/重装触发和方向控制)P2端口(P2.0P2.7,2128引脚):P2口是一个带内部上拉电阻的8位双向I/O端口。P2的输出缓冲器可以驱动(吸收或输出电流方式)4个TTL输入。对端口写入1时,通过内部的上拉电阻把端口拉到高电平,这时可用作输入口。P2作为输入口使用时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输出一个电流。P3端口(P3.0P3.7,1017引脚):P3是一个带内部上拉电阻的8位双向I/O端口。P3的输出缓冲器可驱动(吸收或输出电流方式)4个TTL输入。对端口写入1

13、时,通过内部的上拉电阻把端口拉到高电位,这时可用作输入口。P3做输入口使用时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输入一个电流。在对Flash ROM编程或程序校验时,P3还接收一些控制信号。P3口除作为一般I/O口外,还有其他一些复用功能,如表3-2所示。表3-2 P3口引脚复用功能引脚号复用功能P3.0RXD(串行输入口)P3.1TXD(串行输出口)P3.2INT0(外部中断0)P3.3INT1(外部中断1)P3.4T0(定时器0的外部输入)P3.5T1(定时器1的外部输入)P3.6WR(外部数据存储器写选通)P3.7RD(外部数据存储器读选通)RST(9引脚):复位输入。当输

14、入连续两个机器周期以上高电平时为有效,用来完成单片机单片机的复位初始化操作。看门狗计时完成后,RST引脚输出96个晶振周期的高电平。特殊寄存器AUXR(地址8EH)上的DISRTO位可以使此功能无效。DISRTO默认状态下,复位高电平有效。ALE/PROG(30引脚):地址锁存控制信号(ALE)是访问外部程序存储器时,锁存低8位地址的输出脉冲。在Flash编程时,此引脚(PROG)也用作编程输入脉冲。在一般情况下,ALE以晶振六分之一的固定频率输出脉冲,可用来作为外部定时器或时钟使用。然而,特别强调,在每次访问外部数据存储器时,ALE脉冲将会跳过。如果需要,通过将地址位8EH的SFR的第0位置

15、“1”,ALE操作将无效。这一位置“1”,ALE仅在执行MOVX或MOV指令时有效。否则,ALE将被微弱拉高。这个ALE使能标志位(地址位8EH的SFR的第0位)的设置对微控制器处于外部执行模式下无效。PSEN(29引脚):外部程序存储器选通信号PSEN是外部程序存储器选通信号。当STC89C52从外部程序存储器执行外部代码时,PSEN在每个机器周期被激活两次,而访问外部数据存储器时,PSEN将不被激活。EA/VPP(31引脚):访问外部程序存储器控制信号。为使能从0000H到FFFFH的外部程序存储器读取指令,EA必须接GND。注意加密方式1时,将内部锁定位RESET。为了执行内部程序指令,EA应该接VCC。在Flash编程期间,EA也接收12伏VPP电压。XTAL1(19引脚):振荡器反相放大器和内部时钟发生电路的输入端。XTAL2(18引脚):振荡器反相放大器的输入端。3.2温度传感器的选择DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温。这一部分主要完成对温度信号的采集和转换工作,由DS18B20

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号