aspen吸收塔的设计

上传人:简****9 文档编号:102558345 上传时间:2019-10-03 格式:DOC 页数:5 大小:154.50KB
返回 下载 相关 举报
aspen吸收塔的设计_第1页
第1页 / 共5页
aspen吸收塔的设计_第2页
第2页 / 共5页
aspen吸收塔的设计_第3页
第3页 / 共5页
aspen吸收塔的设计_第4页
第4页 / 共5页
aspen吸收塔的设计_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《aspen吸收塔的设计》由会员分享,可在线阅读,更多相关《aspen吸收塔的设计(5页珍藏版)》请在金锄头文库上搜索。

1、SO2吸收塔的设计计算矿石焙烧炉送出的气体冷却到25后送入填料塔中,用20清水洗涤以除去其中的SO2。入塔的炉气流量为2400,其中SO2摩尔分率为0.05,要求SO2的吸收率为95%。吸收塔为常压操作。试设计该填料吸收塔。解 (1)设计方案的确定用水吸收SO2属于中等溶解度的吸收过程,为提高传质效率,选用逆流吸收过程。因用水作为吸收剂,且SO2不作为产品,故采用纯溶剂。(2)填料的选择对于水吸收SO2的过程,操作过程及操作压力较低,工业上通常选用塑料散装填料。在塑料散装填料中,塑料阶梯环填料的综合性能较好,故此选用聚丙烯阶梯环填料。(3)工艺参数的计算步骤1:全局性参数设置。计算类型为“Fl

2、owsheet”,选择计量单位制,设置输出格式。单击“Next”,进入组分输入窗口,假设炉气由空气(AIR)和SO2组成。在“Component ID”中依次输入H2O,AIR,SO2。步骤2:选择物性方法。选择NRTL方程。步骤3:画流程图。选用“RadFrac”严格计算模块里面的“ABSBR1”模型,连接好物料线。结果如图3-1所示。图3-1 水吸收SO2流程图步骤4:设置流股信息。按题目要求输入进料物料信息。初始用水量设定为400kmol/h。步骤5:吸收塔参数的输入。在“Blocks|B1|Setup”栏目,输入吸收塔参数。吸收塔初始模块参数如表3-1所示。其中塔底气相GASIN由第1

3、4块板上方进料,相当于第10块板下方。Calculation typeEquilibriumNumber of stages13CondenserNoneReboilerNoneValid phasesVapor-LiquidConvergenceStandardFeed stageWATER1GASIN14Pressure(kPa)Stage 1101.325表3-1 吸收塔初始参数至此,在不考虑分离要求的情况下,本流程模拟信息初步设定完毕,运行计算,结果如图3-2所示。此时SO2 吸收率为。图3-2 初步计算结果步骤6:分离要求的设定,塔板数固定时,吸收剂用量的求解。运用 “Design

4、Specifications”功能进行计算,在“Blocks|B1|Design Spec”下,建立分离要求“1”。在“Blocks|B1|Design Spec|1| Specifications”页面,定义分离目标。按题目要求进行设定。结果如图3-3所示。在“Blocks|B1|Design Spec|1|Components”页面,选定 “SO2”为目标组分;在“Feed/Product Streams”页面,选择“LOUT”为参考物流。 图3-3 Design Spec-1的定义 图3-4 Vary-1的定义在“Blocks|B1|Vary”下,定义变量“1”。在“Blocks|B1|

5、Vary|1|Specifications”页面,设定进料流量“Feed rate”为变量,上下限分别为5、1000。结果如图3-4所示。至此,分离要求已设置完毕,运行计算,结果如图3-5所示。当塔板数为13时,要达到95%的吸收率,需用水386.44kmol/h。图3-5 吸收剂用量计算结果步骤6:吸收塔的优化,吸收剂用量对塔板数灵敏度分析。使用“Sensitivity”功能进行分析。在“Modle Analysis Tools|Sensitivity”目录,创建一个灵敏度分析文件“S-1”。在“S-1|Input|Define”页面,定义因变量“FLOW”,用于记录进塔水流量,结果如图3-

6、6所示。图3-6 定义灵敏度分析参数在“S-1|Input|Vary”页面,设置自变量及其变化范围,这里假设塔板数变化,如图3-7所示。在“S-1|Input|Tabulate”页面,设置输出格式。设置“FLOW”为输出变量。图3-7 设置自变量变化范围本题为吸收塔,在塔板数变化的同时,塔底气体的进料位置也随之改变。运用Calculator功能,来实现这一过程。在“Flowsheeting Options|Calculator”目录,创建一个计算器文件“C-1”。在“C-1|Input|Define”页面,定义2个变量,如图3-8所示。其中,“FEED”记录塔底气体进料位置,“NS”记录吸收塔

7、塔板数。图3-8 定义计算器变量在“C-1|Input|Calculate”页面,编写塔底气体进料位置的Fortran语言计算语句,如图3-9所示。图3-9 编写Fortran计算语句在“C-1|Input|Sequence”页面,定义计算器计算顺序,如图3-10所示。在塔B1前计算。图3-10 定义计算器顺序至此,吸收塔灵敏度分析计算所需要的信息已经全部设置完毕,运行计算,结果如图3-11、图3-12所示。图3-12为利用Aspen内Plot功能,吸收剂用量对塔板数作图结果。 图3-11 灵敏度分析计算结果图 图3-12 同塔板数所需吸收剂用量步骤7:吸收塔的工艺参数。由图3-12可得,当塔

8、板数为大于10时,随着塔板数的增加,吸收剂用量减少不太明显,因此选择塔板数为10。在“Blocks|B1|Setup”栏目,将塔板数改为10,塔底气体进料位置为11,隐藏“C-1”和“S-1”,运行计算。结果如图3-13所示。此时,水用量为399.75kmol/h,7200kg/h。图3-13 填料塔最终工艺计算结果(4)填料塔设计首先进行塔径计算。在“Blocks|B1|Pack Sizing”文件夹中,建立一个填料计算文件“1”。在“Pack Sizing|1|Specifications”页面,填写填料位置、选用的填料型号、等板高度等信息,如图3-14所示。其中填料为塑料阶梯环(PLAS

9、TIC CMR),等板高度设定为0.45m。KOCH公司的塑料阶梯环,在Aspen Plus7.2数据中有三种尺寸1A,2A,3A。由于填料尺寸越小,分离效率越高,但阻力增加,通量减少,填料费用也增多。而大尺寸的填料应用于小直径塔中,又会产生液体分布不良及严重的壁流,使塔的分离效率降低。因此初始选择2A型号,其湿填料因子为103.36(1/m)。运行计算,结果如图3-15所示。图3-14 填料塔信息设置图3-15 填料塔计算结果由图3-15可知,填料塔塔径为752mm,最大液相负荷分率0.62,最大负荷因子0.0537m/s,塔压降0.0093bar,平均压降1.73mmHg/m,液体最大表观

10、流速0.0046m/s,比表面积为164/m。本例题填料塔初步计算塔径为752mm,此时最大负荷分率为0.62,相对保守,可以用塔径700mm进一步核核算。在“Blocks|B1|Pack Rating”文件夹下,建立一个填料核算文件“1”, 在“Pack Rating|1|Specifications”页面,填写填料位置、选用的填料型号、等板高度等信息,如图3-16所示。运行计算,结果如图3-17所示。图3-16 填料塔核算参数设置图3-17 填料塔核算参数设置由图3-17可知,当填料塔塔径为0.7m,最大液相负荷分率0.716,在0.60.8之间,最大负荷因子0.062m/s,塔压降0.0142bar,平均压降2.63mmHg/m,液体最大表观流速0.00535m/s。因为一般填料塔的操作空塔气速低于泛点气速,对于一般不易发泡物系,液泛率为60%80%,因此塔径选择0.7m是合理的。

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业/管理/HR > 管理学资料

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号