轴心受力构件课件

上传人:桔**** 文档编号:591939088 上传时间:2024-09-19 格式:PPT 页数:119 大小:2.49MB
返回 下载 相关 举报
轴心受力构件课件_第1页
第1页 / 共119页
轴心受力构件课件_第2页
第2页 / 共119页
轴心受力构件课件_第3页
第3页 / 共119页
轴心受力构件课件_第4页
第4页 / 共119页
轴心受力构件课件_第5页
第5页 / 共119页
点击查看更多>>
资源描述

《轴心受力构件课件》由会员分享,可在线阅读,更多相关《轴心受力构件课件(119页珍藏版)》请在金锄头文库上搜索。

1、第第四四章章轴心受力构件 1 1、了解、了解“轴心受力构件轴心受力构件”的应用和截面形式;的应用和截面形式; 2 2、掌握轴心受拉构件设计计算掌握轴心受拉构件设计计算; 3 3、了了解解“轴轴心心受受压压构构件件”稳稳定定理理论论的的基基本本概概念念和和分析方法;分析方法; 4 4、掌掌握握现现行行规规范范关关于于“轴轴心心受受压压构构件件”设设计计计计算算方法,重点及难点是构件的整体稳定和局部稳定;方法,重点及难点是构件的整体稳定和局部稳定; 5 5、掌握格构式轴心受压构件设计方法。掌握格构式轴心受压构件设计方法。大纲要求大纲要求轴心受力构件4-14-1 概概 述述一、轴心受力构件的应用一、

2、轴心受力构件的应用3.3.塔架塔架1.1.桁架桁架2.2.网架网架轴心受力构件4.4.实腹式轴压柱与格构式轴压柱实腹式轴压柱与格构式轴压柱轴心受力构件二、轴心受压构件的截面形式二、轴心受压构件的截面形式截面形式可分为:截面形式可分为:实腹式实腹式和和格构式格构式两大类。两大类。1、实腹式截面、实腹式截面轴心受力构件2、格构式截面、格构式截面截面由两个或多个型钢肢件通过缀材连接而成。截面由两个或多个型钢肢件通过缀材连接而成。轴心受力构件4-24-2 轴心受力构件的强度和刚度轴心受力构件的强度和刚度一、强度计算(承载能力极限状态)一、强度计算(承载能力极限状态)N轴心拉力或压力设计值;轴心拉力或压

3、力设计值; An n构件的净截面面积;构件的净截面面积; f f钢材的抗拉强度设计值。钢材的抗拉强度设计值。轴心受压轴心受压构件,当构件,当截面无削截面无削弱时,强弱时,强度不必计度不必计算。算。轴轴心心受受力力构构件件轴心受拉构件轴心受拉构件轴心受压构件轴心受压构件强度强度 (承载能力极限状态承载能力极限状态)刚度刚度 (正常使用极限状态正常使用极限状态)强度强度刚度刚度 (正常使用极限状态正常使用极限状态)稳定稳定(承载能力极限状态承载能力极限状态)轴心受力构件二、刚度计算(正常使用极限状态)二、刚度计算(正常使用极限状态) 保证构件在运输、安装、使用时不会产生过保证构件在运输、安装、使用

4、时不会产生过大变形。大变形。 轴心受力构件4-34-3 轴心受压构件的稳定轴心受压构件的稳定一、轴心受压构件的整体稳定一、轴心受压构件的整体稳定(一)轴压构件整体稳定的基本理论(一)轴压构件整体稳定的基本理论1 1、轴心受压构件的失稳形式轴心受压构件的失稳形式 理想的轴心受压构件理想的轴心受压构件( (杆件挺直、荷载无偏心、杆件挺直、荷载无偏心、无初始应力、无初弯曲、无初偏心、截面均匀等)无初始应力、无初弯曲、无初偏心、截面均匀等)的失稳形式分为:的失稳形式分为:轴心受力构件(1 1)弯曲失稳弯曲失稳-只发生弯曲变形,截面只绕一个主只发生弯曲变形,截面只绕一个主轴旋转,杆纵轴由直线变为曲线,是

5、双轴对称截面常见轴旋转,杆纵轴由直线变为曲线,是双轴对称截面常见的失稳形式;的失稳形式;轴心受力构件(2 2)扭转失稳扭转失稳-失稳时除杆件的支撑端外,各截面失稳时除杆件的支撑端外,各截面均绕纵轴扭转,均绕纵轴扭转,是某些双轴对称截面可能发生的失稳形是某些双轴对称截面可能发生的失稳形式;式;轴心受力构件(3 3)弯扭失稳弯扭失稳单轴对称截面绕对称轴屈曲时,杆单轴对称截面绕对称轴屈曲时,杆件发生弯曲变形的同时必然伴随着扭转。件发生弯曲变形的同时必然伴随着扭转。轴心受力构件2.2.轴心受压杆件的弹性弯曲屈曲轴心受压杆件的弹性弯曲屈曲lNNFFFNNNNNcrNcrNcrNcrNNNcrNcrA稳稳

6、定定平平衡衡状状态态B随随遇遇平平衡衡状状态态C临临界界状状态态轴心受力构件下面推导临界力下面推导临界力Ncr 设设M作用下引起的变形为作用下引起的变形为y y1 1,剪力作用下引起的变形为,剪力作用下引起的变形为y y2 2,总变形,总变形y=yy=y1 1+y+y2 2。 由材料力学知:由材料力学知:NcrNcrlyy1y2NcrNcrM=Ncryx剪力剪力V V产生的轴线转角为:产生的轴线转角为:轴心受力构件轴心受力构件对于常系数线形二阶齐次方程:对于常系数线形二阶齐次方程:其通解为:其通解为:NcrNcrlyy1y2NcrNcrM=Ncryx轴心受力构件轴心受力构件 通常剪切变形的影响

7、较小,可忽略不计,即得欧通常剪切变形的影响较小,可忽略不计,即得欧拉临界力和临界应力:拉临界力和临界应力: 上述推导过程中,假定上述推导过程中,假定E为常量为常量(材料满足虎克定(材料满足虎克定律),所以律),所以crcr不应大于材料的比例极限不应大于材料的比例极限f fp p,即:,即:轴心受力构件4.4.轴心受压杆件的弹塑性弯曲屈曲轴心受压杆件的弹塑性弯曲屈曲Ncr,rNcr,rlx xy yd1d2crcr形心轴形心轴中和轴中和轴(1)(1)双模量理论双模量理论 该理论认为,轴压构件在微弯的中性平衡时,截面平均应该理论认为,轴压构件在微弯的中性平衡时,截面平均应力力( (crcr) )要

8、叠加上弯曲应力,弯曲受压一侧应力增加遵循切线模要叠加上弯曲应力,弯曲受压一侧应力增加遵循切线模量量Et规律(规律(分布图形为曲线分布图形为曲线),由于是微弯,故其数值较),由于是微弯,故其数值较crcr小小的多,可近似取直线。而弯曲受拉一侧应力发生退降的多,可近似取直线。而弯曲受拉一侧应力发生退降, ,且应力退且应力退降遵循弹性规律。又因为降遵循弹性规律。又因为EEt,且弯曲拉、压应力平衡,所以,且弯曲拉、压应力平衡,所以中和轴向受拉一侧移动。中和轴向受拉一侧移动。crcrf fp p0E E1dd 历史上有两种历史上有两种理论来解决该问题,理论来解决该问题,即:即: 当当crcr大于大于f

9、fp p后后-曲线为非线性曲线为非线性, ,crcr难以确定。难以确定。轴心受力构件Ncr,rNcr,rlx xy y令:令:I I1 1为弯曲受拉一侧截面为弯曲受拉一侧截面(退降(退降区)区)对中和轴的惯性矩;对中和轴的惯性矩;解此微分方程,即得理想的轴心压杆微弯状态下的弹解此微分方程,即得理想的轴心压杆微弯状态下的弹塑性临界力:塑性临界力:d1d2crcr形心轴形心轴中和轴中和轴I I2 2为弯曲受压一侧截面对中和为弯曲受压一侧截面对中和轴的惯性矩;轴的惯性矩;且忽略剪切变形的影响,由且忽略剪切变形的影响,由内、外弯矩平衡得:内、外弯矩平衡得:轴心受力构件(2)(2)切线模量理论切线模量理

10、论Ncr,rNcr,rlx xy ycr,tcr,t中和轴中和轴假定假定: :A A、达到临界力、达到临界力N Ncr,tcr,t时杆件时杆件 挺直挺直; ;B B、杆微弯时、杆微弯时, ,轴心力增加轴心力增加 N N,其产生的平均压,其产生的平均压 应力与弯曲拉应力相等。应力与弯曲拉应力相等。 所以应力、应变全截面增加,无退降区,切线模量所以应力、应变全截面增加,无退降区,切线模量Et通用于全截面。由于通用于全截面。由于N较较Ncr,t小的多,近似取小的多,近似取Ncr,t作作为临界力。因此以为临界力。因此以Et替代弹性屈曲理论临界力公式中的替代弹性屈曲理论临界力公式中的E,即得该理论的临界

11、力和临界应力:即得该理论的临界力和临界应力:轴心受力构件(二)初始缺陷对压杆稳定的影响(二)初始缺陷对压杆稳定的影响 但试验结果却常位于但试验结果却常位于蓝色虚线蓝色虚线位置,即试验值小位置,即试验值小于理论值。这主要由于压杆于理论值。这主要由于压杆初始缺陷初始缺陷的存在。的存在。 如前所述,如果将钢材视为理想的弹塑性材料,如前所述,如果将钢材视为理想的弹塑性材料,则压杆的临界力与长细比的关系曲线则压杆的临界力与长细比的关系曲线(柱子曲线)(柱子曲线)应为:应为:f fy y0f fy y=f=fp p1.01.00欧拉临界曲线欧拉临界曲线轴心受力构件初初始始缺缺陷陷几何缺陷:几何缺陷:初弯曲

12、初弯曲、初偏心初偏心等;等;力学缺陷:力学缺陷:残余应力残余应力、材料不均匀等。、材料不均匀等。1 1、残余应力的影响、残余应力的影响(1 1)残余应力产生的原因及其分布)残余应力产生的原因及其分布A A、产生的原因、产生的原因 焊接时的不均匀加热和冷却,如前所述;焊接时的不均匀加热和冷却,如前所述; 型钢热扎后的不均匀冷却;型钢热扎后的不均匀冷却; 板边缘经火焰切割后的热塑性收缩;板边缘经火焰切割后的热塑性收缩; 构件冷校正后产生的塑性变形。构件冷校正后产生的塑性变形。 实测的残余应力分布较复杂而离散,分析时常采用实测的残余应力分布较复杂而离散,分析时常采用其简化分布图(计算简图):其简化分

13、布图(计算简图):轴心受力构件+-0.361f0.361fy y0.805f0.805fy y(a)热扎工字钢热扎工字钢0.3f0.3fy y0.3f0.3fy y0.3f0.3fy y(b)热扎热扎H型钢型钢f fy y(c)扎制边焊接扎制边焊接0.3f0.3fy y1 1f fy y(d)焰切边焊接焰切边焊接0.2f0.2fy yf fy y0.75f0.75fy y(e)焊接焊接0.53f0.53fy yf fy y2 2f fy y2 2f fy y( f )热扎等边角钢热扎等边角钢轴心受力构件(2)(2)、残余应力影响下短柱的、残余应力影响下短柱的-曲线曲线 以热扎以热扎H型钢短柱为

14、例:型钢短柱为例:0.3f0.3fy y0.3f0.3fy y0.3f0.3fy y0.3f0.3fy yrcrc=0.3f=0.3fy y=0.7f=0.7fy yf fy y(A)0.7f0.7fy y fffp p=f=fy y- -rcrc时,截面出现塑时,截面出现塑性区,应力分布如图。性区,应力分布如图。 柱屈曲可能的弯曲形式有两种:柱屈曲可能的弯曲形式有两种:沿强轴(沿强轴(x x轴)轴)和和沿弱轴(沿弱轴(y y轴)轴)因此,临界应力为:因此,临界应力为:f fy yacacb1 1rtbrc轴心受力构件 显然,残余应力对弱轴的影响要显然,残余应力对弱轴的影响要大于对强轴的影响大

15、于对强轴的影响(k k11)。th htkbkbb bxxy 为消掉参数为消掉参数k k,有以下补充方程:,有以下补充方程:由由abcabcabcabc得得: :f fy yacacb1 1rtbrc由力的平衡可得截面平均应力由力的平衡可得截面平均应力: :轴心受力构件 纵坐标是临界应力与屈服强度的比值纵坐标是临界应力与屈服强度的比值, ,横坐标是相横坐标是相对长细比对长细比( (正则化长细比正则化长细比) )。联合求解式联合求解式4-94-9和和4-114-11即得即得crxcrx( (x x) ); ; 联合求解式联合求解式4-104-10和和4-114-11即得即得crycry( (y

16、y) )。可将其画成无量纲曲线可将其画成无量纲曲线( (柱子曲线柱子曲线) ),如下;,如下;1.01.00n n欧拉临界曲线欧拉临界曲线1.01.0crxcrxcrycryE E仅考虑残余应力仅考虑残余应力的柱子曲线的柱子曲线轴心受力构件假定:两端铰支压杆的初弯曲曲线为:假定:两端铰支压杆的初弯曲曲线为:2 2、初弯曲的影响、初弯曲的影响NNl/ /2 2l/ /2 2v0 0y0 0v1 1yxyvy0yNNM=N(y 0+ y)xy令令: N作用下的挠度作用下的挠度的增加值为的增加值为y, 由力由力矩平衡得矩平衡得:将式将式4-12代入上式代入上式,得得:轴心受力构件 另外另外, ,由前

17、述推导可知,由前述推导可知,N作用下的挠度的增加值作用下的挠度的增加值为为y,也呈正弦曲线分布:,也呈正弦曲线分布:上式求二阶导数:上式求二阶导数:将式将式4-144-14和和4-154-15代入式代入式4-134-13,整理得:,整理得:轴心受力构件 求解上式,因求解上式,因 sin(sin(x/x/l) 0) 0,所以所以: :杆长中点总挠度为:杆长中点总挠度为: 根据上式,可得理想无限弹性体的压力根据上式,可得理想无限弹性体的压力挠度曲挠度曲线,具有以下特点:线,具有以下特点:v随随N非线形增加非线形增加, ,当当N N趋于趋于N NE E时,时,v趋于无穷趋于无穷;相同相同N N作用下

18、作用下, ,v随随v0 0的增大而增加的增大而增加;初初弯曲的存在使压杆承载力低于欧拉临界力弯曲的存在使压杆承载力低于欧拉临界力N NE E。0.51.00vv0 0=3mm=3mmv0 0=1mm=1mmv0 0=0=0轴心受力构件 实际压杆并非无限弹性体,当实际压杆并非无限弹性体,当N达到某值时,在达到某值时,在N和和Nv的共同作用下,截面边缘开始屈服的共同作用下,截面边缘开始屈服( (A A或或A A点点) ),进入弹塑性阶段,其压力进入弹塑性阶段,其压力-挠度曲线如虚线所示。挠度曲线如虚线所示。 0.51.00vv0 0=3mm=3mmv0 0=1mm=1mmv0 0=0=0ABBA

19、对于仅考虑初弯曲的轴心压杆,对于仅考虑初弯曲的轴心压杆,截面边缘开始屈服截面边缘开始屈服的条件为:的条件为: 最后在最后在N N未达到未达到N NE E时失去承载时失去承载能力,能力,B B或或B B点点为其极限承载力。为其极限承载力。轴心受力构件 解式解式5-195-19,其有效根,即为以,其有效根,即为以截面边缘屈服为准则截面边缘屈服为准则的临界应力:的临界应力: 上式称为柏利上式称为柏利(Perry)(Perry)公式。公式。如果取如果取v0 0= =l/1000/1000(验收规范规定),则:(验收规范规定),则: 由于不同的截面及不同的对称轴,由于不同的截面及不同的对称轴,i/ /不

20、同,因此不同,因此初弯曲对其临界力的影响也不相同。初弯曲对其临界力的影响也不相同。轴心受力构件对于焊接工字型截面轴心压杆,当对于焊接工字型截面轴心压杆,当 时:时:对对x x轴(强轴)轴(强轴)i/ /1.161.16;对对y y轴(弱轴)轴(弱轴) i/ /2.102.10。x xx xy yy y1.01.00欧拉临界曲线欧拉临界曲线对对x x轴轴仅考虑初弯曲的柱子曲线仅考虑初弯曲的柱子曲线对对y y轴轴轴心受力构件微弯状态下建立微分方程:微弯状态下建立微分方程:3 3、初偏心的影响、初偏心的影响NNl/2 2l/2 2xyve0xye00解微分方程,即得:解微分方程,即得:e e0yNN

21、N(e 0+ y)xy0x轴心受力构件所以,压杆长度中点(所以,压杆长度中点(x=x=l/2/2)最大挠度)最大挠度v:其压力其压力挠度曲线如图:挠度曲线如图: 曲线的特点与初弯曲曲线的特点与初弯曲压杆相同,只不过曲线过压杆相同,只不过曲线过圆点,可以认为初偏心与圆点,可以认为初偏心与初弯曲的影响类似,但其初弯曲的影响类似,但其影响程度不同,初偏心的影响程度不同,初偏心的影响随杆长的增大而减小,影响随杆长的增大而减小,初弯曲对中等长细比杆件初弯曲对中等长细比杆件影响较大。影响较大。1.00ve0 0=3mm=3mme0 0=1mm=1mme0 0=0=0ABBA仅考虑初偏心轴心压杆的仅考虑初偏

22、心轴心压杆的压力压力挠度曲线挠度曲线轴心受力构件 实际压杆并非全部铰支,对于任意支承情况的实际压杆并非全部铰支,对于任意支承情况的压杆,其临界力为:压杆,其临界力为:(三)、杆端约束对压杆整体稳定的影响(三)、杆端约束对压杆整体稳定的影响 对于框架柱和厂房阶梯柱的计算长度取值,详对于框架柱和厂房阶梯柱的计算长度取值,详见有关章节。见有关章节。轴心受力构件轴心受力构件 1 1、实际轴心受压构件的临界应力、实际轴心受压构件的临界应力 确定受压构件临界应力的方法,一般有:确定受压构件临界应力的方法,一般有: (1 1)屈服准则屈服准则:以理想压杆为模型,弹性段以欧拉临:以理想压杆为模型,弹性段以欧拉

23、临界力为基础,弹塑性段以切线模量为基础,用安全系界力为基础,弹塑性段以切线模量为基础,用安全系数考虑初始缺陷的不利影响;数考虑初始缺陷的不利影响; (2 2)边缘屈服准则边缘屈服准则:以有初弯曲和初偏心的压杆为模:以有初弯曲和初偏心的压杆为模型,以截面边缘应力达到屈服点为其承载力极限;型,以截面边缘应力达到屈服点为其承载力极限; (3 3)最大强度准则最大强度准则:以有初始缺陷的压杆为模型,考以有初始缺陷的压杆为模型,考虑截面的塑性发展,以最终破坏的最大荷载为其极限虑截面的塑性发展,以最终破坏的最大荷载为其极限承载力;承载力; (4 4)经验公式经验公式:以试验数据为依据。:以试验数据为依据。

24、(四)(四) 实际轴心受压构件的整体稳定计算实际轴心受压构件的整体稳定计算轴心受力构件2、实际轴心受压构件的柱子曲线实际轴心受压构件的柱子曲线 我国规范给定的临界应力我国规范给定的临界应力crcr,是按,是按最大强度准最大强度准则则,并通过数值分析确定的。,并通过数值分析确定的。 由于各种缺陷对不同截面、不同对称轴的影响不由于各种缺陷对不同截面、不同对称轴的影响不同,所以同,所以crcr- -曲线(曲线(柱子曲线柱子曲线),呈相当宽的带状),呈相当宽的带状分布,为减小误差以及简化计算,规范在试验的基础分布,为减小误差以及简化计算,规范在试验的基础上,给出了四条曲线(上,给出了四条曲线(四类截面

25、四类截面),并引入了稳定系),并引入了稳定系数数 。轴心受力构件轴心受力构件3、实际轴心受压构件的整体稳定计算实际轴心受压构件的整体稳定计算 轴心受压构件不发生整体失稳的条件为,轴心受压构件不发生整体失稳的条件为,截面截面应力不大于临界应力应力不大于临界应力,并考虑抗力分项系数,并考虑抗力分项系数R R后,后,即为:即为:公式使用说明:公式使用说明: (1)截面分类:见教材表)截面分类:见教材表4-4,第,第75页;页;轴心受力构件(2)构件长细比的确定)构件长细比的确定、截面为双轴对称或极对称构件:、截面为双轴对称或极对称构件:xxyy对于双轴对称十字形截面,为了防对于双轴对称十字形截面,为

26、了防止扭转屈曲,尚应满足:止扭转屈曲,尚应满足:、截面为单轴对称构件:、截面为单轴对称构件:xxyy绕对称轴绕对称轴y y轴屈曲时,一般为轴屈曲时,一般为弯弯扭屈曲扭屈曲,其临界力低于弯曲屈曲,其临界力低于弯曲屈曲,所以计算时,以换算长细比所以计算时,以换算长细比yzyz代替代替y y ,计算公式如下:,计算公式如下:xxyyb bt t轴心受力构件轴心受力构件、单角钢截面和双角钢组合、单角钢截面和双角钢组合T T形截面可采取以下简形截面可采取以下简 化计算公式:化计算公式:yytb(a)A A、等边单角钢截面,图(、等边单角钢截面,图(a a)轴心受力构件B B、等边双角钢截面,图(、等边双

27、角钢截面,图(b b)yybb(b b)轴心受力构件C C、长肢相并的不等边角钢截面,、长肢相并的不等边角钢截面, 图(图(C C)yyb2b2b1(C C)轴心受力构件D D、短肢相并的不等边角钢截面,、短肢相并的不等边角钢截面, 图(图(D D)yyb2b1b1(D D)轴心受力构件、单轴对称的轴心受压构件在绕非对称轴以外的、单轴对称的轴心受压构件在绕非对称轴以外的任意轴失稳时,应按弯扭屈曲计算其稳定性。任意轴失稳时,应按弯扭屈曲计算其稳定性。uub 当计算等边角钢构件绕平行轴当计算等边角钢构件绕平行轴(u轴轴) )稳定时,可按下式计算换算稳定时,可按下式计算换算长细比,并按长细比,并按b

28、类截面类截面确定确定 值:值:轴心受力构件(3 3)其他注意事项:)其他注意事项:1 1、无任何对称轴且又非极对称的截面、无任何对称轴且又非极对称的截面(单面连接的(单面连接的不等边角钢除外)不等边角钢除外)不宜用作轴心受压构件;不宜用作轴心受压构件;2 2、单面连接的单角钢轴心受压构件,考虑、单面连接的单角钢轴心受压构件,考虑强度折减强度折减系数系数后,可不考虑弯扭效应的影响;后,可不考虑弯扭效应的影响;3 3、格构式截面中的槽形截面分肢,计算其绕对称轴、格构式截面中的槽形截面分肢,计算其绕对称轴(y y轴)的稳定性时,不考虑扭转效应,直接用轴)的稳定性时,不考虑扭转效应,直接用y y查查稳

29、定系数稳定系数 。y yy yx xx x实轴实轴虚虚轴轴轴心受力构件单角钢的单面连接时强度设计值的折减系数:单角钢的单面连接时强度设计值的折减系数:u1 1、按轴心受力计算强度和连接乘以系数、按轴心受力计算强度和连接乘以系数 0.850.85;u2 2、按轴心受压计算稳定性:、按轴心受压计算稳定性: 等边角钢乘以系数等边角钢乘以系数0.6+0.00150.6+0.0015,且不大于,且不大于1.01.0; 短边相连的不等边角钢乘以系数短边相连的不等边角钢乘以系数 0.5+0.00250.5+0.0025,且不大于且不大于1.01.0; 长边相连的不等边角钢乘以系数长边相连的不等边角钢乘以系数

30、 0.700.70;u3 3、对中间无联系的单角钢压杆,、对中间无联系的单角钢压杆, 按按最小回转半径最小回转半径计算计算,当当 2080 80 时,时,为提高柱的抗扭刚度,防止腹板在运输和施工中为提高柱的抗扭刚度,防止腹板在运输和施工中发生过大的变形,应设横向加劲肋,要求如下:发生过大的变形,应设横向加劲肋,要求如下: 横向加劲肋间距横向加劲肋间距3h3h0 0; 横向加劲肋的外伸宽度横向加劲肋的外伸宽度b bs shh0 0/30+40 mm/30+40 mm; 横向加劲肋的厚度横向加劲肋的厚度t ts sbbs s/15/15。 对于组合截面,其翼缘与对于组合截面,其翼缘与腹板间腹板间

31、的焊缝受力较小,可不于计算,按构的焊缝受力较小,可不于计算,按构 造选定焊脚尺寸即可。造选定焊脚尺寸即可。b bs s横向加劲肋横向加劲肋3h3h0 0h h0 0t ts s 对于实腹式柱,当腹板的高厚比对于实腹式柱,当腹板的高厚比h h0 0/t/tw w80 80 时,时,为提高柱的抗扭刚度,防止腹板在运输和施工中为提高柱的抗扭刚度,防止腹板在运输和施工中发生过大的变形,应设横向加劲肋,要求如下:发生过大的变形,应设横向加劲肋,要求如下: 横向加劲肋间距横向加劲肋间距3h3h0 0; 横向加劲肋的外伸宽度横向加劲肋的外伸宽度b bs shh0 0/30+40 mm/30+40 mm; 横

32、向加劲肋的厚度横向加劲肋的厚度t ts sbbs s/15/15。 对于组合截面,其翼缘与对于组合截面,其翼缘与腹板间腹板间 的焊缝受力较小,可不于计算,按构的焊缝受力较小,可不于计算,按构 造选定焊脚尺寸即可。造选定焊脚尺寸即可。轴心受力构件( (一一) )、截面选取原则、截面选取原则尽可能做到尽可能做到等稳定性等稳定性要求。要求。y yy yx xx x(a a)实轴实轴虚虚轴轴x xx xy yy y(b b)虚虚轴轴虚轴虚轴x xx xy yy y(c c)虚轴虚轴虚虚轴轴二、格构式轴心受压构件设计二、格构式轴心受压构件设计轴心受力构件( (二二) ) 格构式轴压构件设计格构式轴压构件

33、设计1 1、强度、强度N轴心压力设计值;轴心压力设计值; An柱肢净截面面积之和。柱肢净截面面积之和。y yy yx xx x实轴实轴虚虚轴轴N轴心受力构件2 2、整体稳定验算、整体稳定验算 对于常见的格构式截面形式,只能产生对于常见的格构式截面形式,只能产生弯曲屈曲弯曲屈曲,其其弹性屈曲弹性屈曲时的临界力为:时的临界力为:或:或:轴心受力构件(1 1)对实轴()对实轴(y-yy-y轴)的整体稳定轴)的整体稳定 因因 很小,因此可以忽略剪切变形,很小,因此可以忽略剪切变形,o o=y y, ,其弹性屈曲时的临界应力为:其弹性屈曲时的临界应力为:则稳定计算:则稳定计算:y yy yx xx x实

34、轴实轴虚虚轴轴轴心受力构件(2 2)对虚轴()对虚轴(x-xx-x)稳定)稳定 绕绕x x轴轴(虚虚轴轴)弯弯曲曲屈屈曲曲时时,因因缀缀材材的的剪剪切切刚刚度较小,剪切变形大,度较小,剪切变形大,1 1则不能被忽略,因此:则不能被忽略,因此:则稳定计算:则稳定计算:轴心受力构件 由于不同的缀材体系剪切刚度不同,由于不同的缀材体系剪切刚度不同, 1 1亦不同,所亦不同,所以换算长细比计算就不相同。通常有两种缀材体系,即以换算长细比计算就不相同。通常有两种缀材体系,即缀条式和缀板式体系,其换算长细比计算如下:缀条式和缀板式体系,其换算长细比计算如下: 双肢缀条柱双肢缀条柱 设一个节间两侧斜缀条面积

35、之和为设一个节间两侧斜缀条面积之和为A1;节间长度为;节间长度为l1 1VV单位剪力作用下斜缀条长度及其内力为:单位剪力作用下斜缀条长度及其内力为:V=1V=1V=1V=1d d1 11 1l1 1ld da ab bc cd dbb轴心受力构件假设变形和剪切角假设变形和剪切角有限微小有限微小,故水平变形为:,故水平变形为:剪切角剪切角1 1为:为:因此,斜缀条的轴向变形为:因此,斜缀条的轴向变形为:V=1V=1V=1V=1d d1 11 1l1 1ld da ab bc cd dbbe e轴心受力构件将式将式4-514-51代入式代入式4-504-50,得:,得:对于一般构件,对于一般构件,

36、在在40407070o o之间之间,所以规范给定,所以规范给定的的0x0x的计算公式为:的计算公式为:10 20 30 40 50 60 70 80 90 ( (度度) )10080604020027轴心受力构件a ab bc cd d 双肢缀板柱双肢缀板柱假定假定: :u缀板与肢件刚接,组成一多层刚架;缀板与肢件刚接,组成一多层刚架;u弯曲变形的反弯点位于各节间的中点;弯曲变形的反弯点位于各节间的中点;u只考虑剪力作用下的弯曲变形。只考虑剪力作用下的弯曲变形。取隔离体如下:取隔离体如下: 当当超出以上范围时应按式超出以上范围时应按式4-524-52计算计算。l1 1a aI I1 1I Ib

37、 ba ax xx x1 11 1l1 1a aa a1 1- -2 21 1- -2 21 1- -2 21 1- -2 2l1 1- -2 2l1 1- -2 2l1 1- -a aT T= =1 11 11 11 12 2a ab bc cd de ef f轴心受力构件分肢弯曲变形引起的水平位移分肢弯曲变形引起的水平位移2 2:因此因此,剪切角剪切角1 1:缀板的弯曲变形引起的分肢水平位移缀板的弯曲变形引起的分肢水平位移1 1:a a1 1- -2 21 1- -2 21 1- -2 21 1- -2 2l1 1- -2 2l1 1- -2 2l1 1- -a aT T= =1 11 1

38、1 11 12 2a ab bc cd de ef f轴心受力构件将剪切角将剪切角1 1代入式代入式4-50,并引入分肢和缀板的线刚度,并引入分肢和缀板的线刚度K K1 1、K Kb b,得,得:轴心受力构件由于规范规定由于规范规定 这时:这时: 所以规范规定双肢缀板柱的换算长细比按下式计算:所以规范规定双肢缀板柱的换算长细比按下式计算:式中:式中:轴心受力构件 对于三肢柱和四肢柱的换算长细比的计算见规范。对于三肢柱和四肢柱的换算长细比的计算见规范。3 3、缀材的设计、缀材的设计(1 1)轴心受压格构柱的横向剪力)轴心受压格构柱的横向剪力 构件在微弯状态下,假设其挠曲线为正弦曲线,跨构件在微弯

39、状态下,假设其挠曲线为正弦曲线,跨中最大挠度为中最大挠度为v,则沿杆长任一点的挠度为:,则沿杆长任一点的挠度为:Nlz zy yvVNyy yy yx xx xb b轴心受力构件截面弯矩为:截面弯矩为:所以截面剪力:所以截面剪力:显然,显然,z=0=0和和z= =l时:时:由由边缘屈服准则边缘屈服准则:Nlz zy yvVNyv vmaxmaxy yy yx xx xb b轴心受力构件轴心受力构件 在设计时,假定横向剪力沿长度方向保持不变,且横在设计时,假定横向剪力沿长度方向保持不变,且横向剪力由各缀材面分担。向剪力由各缀材面分担。 V Vl轴心受力构件(2 2)缀条的设计)缀条的设计A、缀条

40、可视为以柱肢为弦杆的平行弦桁架的腹杆,缀条可视为以柱肢为弦杆的平行弦桁架的腹杆,故一个斜缀条的轴心力为:故一个斜缀条的轴心力为:V V1 1V V1 1单缀条单缀条V V1 1V V1 1双缀条双缀条轴心受力构件B B、由于剪力的方向不定,斜缀条应按、由于剪力的方向不定,斜缀条应按轴压构件计算,轴压构件计算,其其长细比按最小回转半径计算;长细比按最小回转半径计算;C C、斜缀条一般采用单角钢与柱肢单面连接,设计时斜缀条一般采用单角钢与柱肢单面连接,设计时钢材钢材强度应进行折减强度应进行折减,同前;,同前;D D、交叉缀条体系的、交叉缀条体系的横缀条横缀条应按轴压构件计算,取其内力应按轴压构件计

41、算,取其内力N=V1;V V1 1V V1 1单缀条单缀条V V1 1V V1 1双缀条双缀条E E、单缀条体系为减小分肢的计算长度,、单缀条体系为减小分肢的计算长度,可设横缀条(可设横缀条(虚线虚线),其截面一般与斜),其截面一般与斜缀条相同,或按容许长细比缀条相同,或按容许长细比 =150=150确确定。定。轴心受力构件(3 3)缀板的设计)缀板的设计对于缀板柱取隔离体如下:对于缀板柱取隔离体如下:由力矩平衡可得:由力矩平衡可得:剪力剪力T在缀板端部产生的弯矩在缀板端部产生的弯矩:V V1 1/2/2l1 12 2l1 12 2V V1 1/2/2a/2a/2TTMdT和和M即为缀板与肢件

42、连接处的设计内力。即为缀板与肢件连接处的设计内力。轴心受力构件u同一截面处两侧缀板线刚度之和不小于单同一截面处两侧缀板线刚度之和不小于单个分肢线刚度的个分肢线刚度的6倍倍,即:,即: ;u缀板宽度缀板宽度d d2a/32a/3,厚度,厚度ta/40ta/40且不小于且不小于6mm6mm;u端缀板宜适当加宽,一般取端缀板宜适当加宽,一般取d=ad=a。4 4、格构柱的设计步骤、格构柱的设计步骤 格构柱的设计需首先确定柱肢截面和格构柱的设计需首先确定柱肢截面和缀材形式。缀材形式。 对于对于大型柱宜用缀条柱大型柱宜用缀条柱,中小型柱两中小型柱两种缀材均可种缀材均可。 具体设计步骤如下:具体设计步骤如

43、下:缀板的构造要求:缀板的构造要求:a ax xx x1 11 1l1 1a ad d轴心受力构件以双肢柱为例:以双肢柱为例:1 1、按对实轴的整体稳定确定柱的截面、按对实轴的整体稳定确定柱的截面( (分肢截面分肢截面) );2 2、按等稳定条件确定两分肢间距、按等稳定条件确定两分肢间距a a,即,即 0x0x= =y y;双肢缀条柱:双肢缀条柱:双肢缀板柱:双肢缀板柱: 轴心受力构件 显然,为求得显然,为求得x x,对缀条柱需确定缀条截面积,对缀条柱需确定缀条截面积A A1 1;对缀板柱需确定分肢长细比;对缀板柱需确定分肢长细比1 1。所以,由教材附表,求得截面宽度:所以,由教材附表,求得截

44、面宽度:当然也可由截面几何参数计算得到当然也可由截面几何参数计算得到b;3、验算对虚轴的整体稳定,并调整、验算对虚轴的整体稳定,并调整b;4、设计缀条和缀板及其与柱肢的连接。、设计缀条和缀板及其与柱肢的连接。对虚轴的回转半径:对虚轴的回转半径:轴心受力构件格构柱的构造要求:格构柱的构造要求:0x0x和和y y ;为保证分肢不先于整体失稳,应满足:为保证分肢不先于整体失稳,应满足:缀条柱的分肢长细比:缀条柱的分肢长细比:缀板柱的分肢长细比:缀板柱的分肢长细比: 轴心受力构件(三)柱子的横隔(三)柱子的横隔 为提高柱子的抗扭刚度,应设柱子横隔,间距不大为提高柱子的抗扭刚度,应设柱子横隔,间距不大于

45、柱截面较大宽度的于柱截面较大宽度的9 9倍或倍或8m8m,且每个运输单元的端部均,且每个运输单元的端部均应设置横隔。应设置横隔。轴心受力构件445 5 柱头和柱脚柱头和柱脚一、柱头(梁与柱的连接一、柱头(梁与柱的连接铰接铰接)(一)连接构造(一)连接构造 为为了了使使柱柱子子实实现现轴轴心心受受压压,并并安安全全将将荷荷载载传传至至基基础础,必须合理构造柱头、柱脚。必须合理构造柱头、柱脚。 设设计计原原则则是是:传传力力明明确确、过过程程简简洁洁、经经济济合合理理、安安全可靠,并具有足够的刚度且构造又不复杂。全可靠,并具有足够的刚度且构造又不复杂。轴心受力构件1)梁与柱的铰接连接梁与柱的铰接连

46、接 2)梁与柱的刚性连接梁与柱的刚性连接 图图4-18 梁支承于柱顶的铰接连接梁支承于柱顶的铰接连接轴心受力构件图图4-19 4-19 梁支承于柱侧的铰接连接梁支承于柱侧的铰接连接轴心受力构件(二)、传力途径(二)、传力途径传力路线:传力路线:梁梁 突缘突缘 柱顶板柱顶板 加劲肋加劲肋 柱身柱身焊缝焊缝垫板垫板焊缝焊缝焊缝焊缝柱顶板柱顶板加劲肋加劲肋柱柱梁梁梁梁突缘突缘垫板垫板填板填板填板填板构造螺栓构造螺栓轴心受力构件(三)、柱头的计算(三)、柱头的计算(1)(1)梁端局部承压计算梁端局部承压计算梁设计中讲授梁设计中讲授(2)(2)柱顶板柱顶板平面尺寸超出柱轮平面尺寸超出柱轮廓尺寸廓尺寸15

47、-20mm15-20mm,厚度不,厚度不小于小于14mm14mm。(3 3)加劲肋)加劲肋 加劲肋与柱腹板的连接焊缝按承受剪力加劲肋与柱腹板的连接焊缝按承受剪力V=N/ /2和弯矩和弯矩M=Nl/ /4计算。计算。N/2l/2l15-20mm15-20mm15-20mm15-20mmt14mmt14mm轴心受力构件二、柱脚二、柱脚(一)柱脚的型式和构造(一)柱脚的型式和构造 柱脚的作用是把柱下端固定并将其内力传给基础。柱脚的作用是把柱下端固定并将其内力传给基础。 1) 1)铰接柱脚铰接柱脚 轴心受力构件 2)2)刚接柱脚刚接柱脚 轴心受力构件(5(5)柱脚锚栓)柱脚锚栓 1)1)柱脚锚栓不得用

48、以承受柱脚底部的水平反力,此水平反柱脚锚栓不得用以承受柱脚底部的水平反力,此水平反力应由底板与混凝土基础间的摩擦力或设置抗剪键承受。力应由底板与混凝土基础间的摩擦力或设置抗剪键承受。 2) 2)柱脚锚栓埋置在基础中的深度,应使锚栓的内力通过其柱脚锚栓埋置在基础中的深度,应使锚栓的内力通过其和混凝土之间的粘结力传递。当埋置深度受到限制时,则锚栓和混凝土之间的粘结力传递。当埋置深度受到限制时,则锚栓应牢固地固定在锚板或锚梁上,以传递锚栓的全部内力,此时应牢固地固定在锚板或锚梁上,以传递锚栓的全部内力,此时锚栓与混凝土之间的粘结力可不予考虑。锚栓与混凝土之间的粘结力可不予考虑。 3)锚栓不宜直接连于

49、底板上,因底板刚度不足,不能保证锚栓不宜直接连于底板上,因底板刚度不足,不能保证锚栓受拉的可靠性。锚栓通常支承于焊于靴梁的肋板上,肋板锚栓受拉的可靠性。锚栓通常支承于焊于靴梁的肋板上,肋板上同时搁置水平板和垫板(见下图)。上同时搁置水平板和垫板(见下图)。轴心受力构件轴心受力构件 铰接柱脚只传递轴心压铰接柱脚只传递轴心压力和剪力。剪力通常由底板力和剪力。剪力通常由底板与基础表面的摩擦力传递。与基础表面的摩擦力传递。当此摩擦力不足以承受水平当此摩擦力不足以承受水平剪力时,应在柱脚底板下设剪力时,应在柱脚底板下设置抗剪键,抗剪键可用方钢置抗剪键,抗剪键可用方钢、短、短形钢或形钢或H型钢做成。型钢做

50、成。轴心受力构件 实际的铰接实际的铰接柱脚型式有以下几种:柱脚型式有以下几种:1、轴承式柱脚、轴承式柱脚 制作安装复杂,费钢材,但与制作安装复杂,费钢材,但与力学符合较好。力学符合较好。枢轴枢轴轴心受力构件2 2、平板式柱脚、平板式柱脚XYN靴梁靴梁隔板隔板底板底板隔板隔板锚栓锚栓柱柱轴心受力构件 锚栓用以固定柱脚位置,沿轴线布置锚栓用以固定柱脚位置,沿轴线布置2 2个,直径个,直径20-24mm20-24mm。肋板肋板b1轴心受力构件(二)柱脚计算(二)柱脚计算1.1.传力途径传力途径柱 靴梁 底板 混凝土基础隔板(肋板)实际计算不考虑实际计算不考虑c cc ca a1 1B Bt t1 1

51、t t1 1L La ab b1 1靴梁靴梁隔板隔板底板底板隔板隔板锚栓锚栓柱柱N轴心受力构件2.2.柱脚的计算柱脚的计算(1)(1)底板的面积底板的面积 假设基础与底板间的假设基础与底板间的压应力均匀分布。压应力均匀分布。式中:式中:fc c-混凝土轴心抗压设计强度;混凝土轴心抗压设计强度;l-基础混凝土局部承压时的强度提高系数。基础混凝土局部承压时的强度提高系数。 fc c 、l均按混凝土结构设计规范取值。均按混凝土结构设计规范取值。A An n底版净面积,底版净面积,A An n =BL-A =BL-A0 0。A Ao o-锚栓孔面积,一般锚栓孔直径为锚栓直径的锚栓孔面积,一般锚栓孔直径

52、为锚栓直径的 1 11.51.5倍。倍。c cc ca a1 1B Bt t1 1t t1 1a ab b1 1靴梁靴梁隔板隔板底板底板L L轴心受力构件a a1 1 构件截面高度;构件截面高度;t t1 1 靴梁厚度一般为靴梁厚度一般为101014mm14mm;c c 悬臂宽度,悬臂宽度,c=3c=34 4倍螺栓直倍螺栓直 径径d d,d=2024mm,则则 L L 可求。可求。(2)(2)底板的厚度底板的厚度 底板的厚度,取决于受力大小,可将其分为不同底板的厚度,取决于受力大小,可将其分为不同受力区域:一边受力区域:一边( (悬臂板悬臂板) )、两边、三边和四边支承板。、两边、三边和四边支

53、承板。各区格各区格单位宽度单位宽度上的最大弯矩为:上的最大弯矩为: 一边支承部分(悬臂板)一边支承部分(悬臂板)c cc ca a1 1B Bt t1 1t t1 1a ab b1 1L L轴心受力构件 二相邻边支承部分:二相邻边支承部分: - -对角线长度;对角线长度; - -系数,与系数,与 有关。有关。 式中:式中:b b2 2/a/a2 20.30.40.50.60.70.80.91.01.11.20.0260.0420.0560.0720.0850.0920.1040.1110.1200.125c cc ca a1 1B Bt t1 1t t1 1a ab b1 1L La a2 2

54、b b2 2轴心受力构件 三边支承部分:三边支承部分: - -自由边长度;自由边长度; - -系数,与系数,与 有关。有关。 式中:式中:c cc ca a1 1B Bt t1 1t t1 1a ab b1 1L L当当b b1 1/a/a1 10.30.3时,可按悬臂长度为时,可按悬臂长度为b b1 1的悬臂板计算。的悬臂板计算。b b1 1/a/a1 10.30.40.50.60.70.80.91.01.11.20.0260.0420.0560.0720.0850.0920.1040.1110.1200.125轴心受力构件 四边支承部分:四边支承部分: 式中:式中: a-四边支承板短边长度

55、;四边支承板短边长度; b-四边支承板长边长度;四边支承板长边长度; 系数,与系数,与b/a有关。有关。b/a1.01.11.21.31.41.51.61.71.81.92.03.04.00.0480.0550.0630.0690.0750.0810.0860.0910.0950.0990.1010.1190.125c cc ca a1 1B Bt t1 1t t1 1a ab b1 1L L轴心受力构件 底板最小厚度不得小于底板最小厚度不得小于14mm,14mm,通常为通常为20mm20mm40mm40mm。(3)(3)靴梁的设计靴梁的设计A A、靴梁的最小厚度不宜小于、靴梁的最小厚度不宜小

56、于10mm10mm,高度由其与柱间的,高度由其与柱间的焊缝(焊缝(4 4条)长度确定。条)长度确定。c cc ca a1 1B Bt t1 1t t1 1a ab b1 1L L靴梁靴梁h ha a轴心受力构件qlhalRRB B、靴梁的截面验算、靴梁的截面验算 按支承在柱边的双悬臂外伸梁受均布反力作用。按支承在柱边的双悬臂外伸梁受均布反力作用。c cc ca a1 1B Bt t1 1t t1 1a ab b1 1L LleM轴心受力构件(4)(4)隔板的计算隔板的计算 隔板的厚度不得小于其宽隔板的厚度不得小于其宽度的度的1/501/50,高度由计算确定,高度由计算确定,且略小于靴梁的高度。

57、且略小于靴梁的高度。 隔板可视为简支于靴梁的隔板可视为简支于靴梁的简支梁,负荷范围如图。简支梁,负荷范围如图。c cc ca a1 1B Bt t1 1t t1 1a ab b1 1L Lh ha a隔板隔板h h1 1qh h1 1a a1 1轴心受力构件隔板截面验算:隔板截面验算:qh h1 1a a1 1式中:式中:(5)(5)靴梁及隔板与底板间的焊缝的计算靴梁及隔板与底板间的焊缝的计算 按正面角焊缝,承担全部轴力计算,焊脚尺寸由按正面角焊缝,承担全部轴力计算,焊脚尺寸由构造确定。构造确定。轴心受力构件柱脚零件间的焊缝布置柱脚零件间的焊缝布置焊缝布置原则:焊缝布置原则:考虑施焊的方便与可能考虑施焊的方便与可能轴心受力构件

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号