第三章风险与收益课件

上传人:M****1 文档编号:590913681 上传时间:2024-09-16 格式:PPT 页数:76 大小:965KB
返回 下载 相关 举报
第三章风险与收益课件_第1页
第1页 / 共76页
第三章风险与收益课件_第2页
第2页 / 共76页
第三章风险与收益课件_第3页
第3页 / 共76页
第三章风险与收益课件_第4页
第4页 / 共76页
第三章风险与收益课件_第5页
第5页 / 共76页
点击查看更多>>
资源描述

《第三章风险与收益课件》由会员分享,可在线阅读,更多相关《第三章风险与收益课件(76页珍藏版)》请在金锄头文库上搜索。

1、第三章 风险与收益n第一节风险与收益的概念n第二节投资组合的风险与收益证券价值就是证券给投资者提供的现金流量的现值,求现值时的贴现率是投资者所要求的包含了风险在内的期望报酬率。投资决策按风险程度不同可以分为三类:(1)确定性投资决策(几乎不存在)(2)风险性投资决策(大多数投资决策属于这一类)(3)不确定性投资决策(规定主观概率后可以转化为风险性投资决策)人们进行风险投资的原因是:(1)几乎所有的经济活动(包括投资)都存在风险;(2)平均来讲,承担风险一定会得到相应的报酬,而且风险越大,报酬越高。表21给出了美国不同投资方向的收益和风险状况,不难看出风险与收益的相关关系。表21第一节风险与收益

2、的概念一、收益(return)(一)收益额=Dt+(PtPt-1)公式(21)其中:Dt第t期的股利收入(Pt-Pt-1)第t期的资本利得若年末你不出售所持有的股票,是否应将资本利得视为一部分收益呢?回答是肯定的。Dt+(PtPt-1)(二)收益率=公式(22)Pt-1例:某人持有100股A股票,3个月前A股票的价格 为$35$35 /股,股票现在的交易价格为$40$40/股, 股东刚刚分得现金股利 $0.5/$0.5/股股. 收益是多少?n有关证券收益率最著名的研究是Rex SinquefieldRex Sinquefield(瑞克斯 森克菲尔德)和Roger IbbostionRoger

3、Ibbostion(罗格 伊博森)主持完成的。他们研究了5 5种美国重要证券历史上的收益率。n普通股:普通股组合以标准普尔(S&PS&P)综合指数为基础,包括美国500500家市值最大的公司。n小型资本化股:由NYSENYSE上市交易的股票中,按市值排序最后面的15%15%的股票组成。n长期公司债券:由到期期限为2020年的优质公司债券组成。n长期美国政府债券:由到期期限为2020年的美国政府债券组成。n美国国库券(treasury billtreasury bill):由到期期限为3 3个月的美国国库券组成。n 除此之外还计算了历年消费价格指数,用于度量通货膨胀。这几种证券收益(用股指表示)

4、的变化如图2121所示。图21美国5种证券收益变化图以下直方图展示了几种证券每年的收益率:图22A普通股各年总收益图22B小公司股票的各年总收益图22C长期政府债券的各年总收益图22D美国国库券的各年总收益图22E各年通货膨胀(三)平均收益 证券在各年之间的平均收益,可以用简单算术平均数计算,即:R1+R2+R3+Rn平均收益率=公式(23)n(四)无风险收益与风险溢价 从图21和22中,可以看到国库券(treasurebill)收益没有股票收益那么剧烈的波动且无负收益的情况。一般称国库券的收益在短期内是“无风险收益”。各种证券与国库券相比都属于风险证券,其收益称为风险收益。风险收益与无风险收

5、益之间的差额称为“风险资产的超额收益”或“风险溢价”(riskpremium)。表22展示了19261997年美国各种主要证券的平均收益率和风险溢价。 表2219261997年各种证券投资的收益和风险二、风险风险(risk),是预期收益的不确定性。国库券为无风险证券,而普通股等为有风险证券。证券预期收益的不确定性越大,其风险就越大。(一)概率分布(probabilitydistribution)概率,是指随机事件发生的可能性。概率分布,是把随机事件所有可能的结果及其发生的概率都列示出来所形成的分布。概率分布符合两个条件:0Pi1Pi=1概率分布的种类:离散性分布,如图23连续性分布,如图24图

6、23离散概率分布图图24连续概率分布图(二)风险的测定(单项资产风险的测定)单项资产风险的大小是用方差或标准差来表示的。风险的测定过程就是方差或标准差的计算过程。1、期望收益率(expectedreturn),各种可能的收益率按其各自发生的概率为权数进行加权平均所得到的收益率,计算公式为:R=RiPi公式(25)2、标准差(standarddeviation,SD或)或方差(variation,Var或2),各种可能的收益率偏离期望收益率的平均程度。离差平方和的平均数即为方差,方差开方后为标准差,计算公式为:=(RiR)2Pi公式(26) 对于两个期望报酬率相同的项目,标准差越大,风险越大,标

7、准差越小,风险越小。(三)风险报酬率 一般的投资者都是厌恶风险的,他们常常会选择较小的确定性等值而放弃较大的不确定性期望值。因此,可以用个人的确定性等值和不确定性(风险投资的)期望值的关系来定义个人对风险的态度。确定性等值与风险投资期望值之间的差额形成风险溢价。在理财学中,一般假定大部分投资者为风险厌恶者图25收益与风险的关系图三、正态分布和标准差的含义正态分布(normaldistribution) -3-2-10+1+2+3-47.9%-27.6%-7.3%13%33.3%53.6%73.9%图26正态分布图1. 美国19261997年普通股平均收益R为13%,收益的标准差为20.3%。根

8、据正态分布的特点:1、大约有68%的年收益率在-7.3%与33.3%之间2、大约有95%的年收益率在-27.6%与53.6%之间3、大约有99%的年收益在-47.9%与73.9%之间四、协方差和相关系数协方差和相关系数是度量两个随机变量之间相互关系的统计指标。协方差:衡量两个随机变量如何共同变化,即它们之间的“互动”。两个随机变量A、B之间的协方差通常用COV(RA,RB)或AB表示,公式为:AB=COV(RA,RB)=(RAi-RA)(RBi-RB)Pi公式(2-8)当一个随机变量出现大于(小于)均值的值时,另一个随机变量的值也会大于(小于)均值,即两种证券收益的变动趋势一致,或者说是正相关

9、,则它们的协方差为正;如果两种证券的收益负相关,它们的协方差为负;如果两种证券的收益不相关,则它们的协方差等于零。n相关系数是反映两种证券收益率之间相关程度的相对数。通常用Corr(RA,RB)或AB表示。n它等于两种证券收益的协方差除以两种证券收益的标准差的乘积。计算公式为:AB=AB/AB公式(29)nAB在-1和+1之间变化,且AB=BA01为正相关=1为完全正相关-10为负相关=-1为完全负相关=0为不相关第二节投资组合的风险与收益 投资组合:两种或两种以上的证券构成的组合,又称证券组合、资产组合(portfolio)。投资组合理论有传统组合理论和现代组合理论之分。传统组合理论主要解决

10、三方面问题:一是决定适当的投资组合目标;二是根据组合目标选择适当的证券,构成投资组合;三是监视和调整投资组合。现代组合理论的创始人是美国经济学家马柯维茨(HarryM.Markowitz),他于1952年发表的论文“证券组合选择”和于1959年出版的同名专著是现代组合理论的起源。他认为证券的投资收益与风险之间存在着一定的关系,投资风险分散有其规律性。n在马柯维茨研究的基础上,以夏普(WillianF.Sharpe)为代表的经济学家在60年代中期发展了被称之为“资本资产定价模型”(CAPM)的新理论。该理论提出:一种资产的预期收益要受以值表示的市场风险的巨大影响。一、投资组合的风险与收益n现代投

11、资组合理论主要基于如下假设:n1.假设证券市场充分有效n2.假设影响投资决策的主要因素为期望收益率和风险两项n3.假设投资者都是收益偏好者n4.假设投资者都是风险厌恶者n5.假设投资者都是理性的人(一)两项资产组合的风险与收益1、组合的期望收益组合的期望收益率(Rp)就是构成这个组合的各个证券的期望收益率以投资比重(wi)为权数的加权平均数。Rp=WiRi(i=A,B,WA+WB=100%)公式(210)2、组合的风险投资组合的风险也是以方差或标准差为基础度量的。两项资产组合的方差和标准差: p2=WA2A2+WB2B2+2WAWBAB公式(211)p=p2n显然,组合标准差在AB=1时最大,

12、在AB=-1时最小。例1:某证券组合由两证券构成,该两证券的预期收益率和标准差分别为R1=20%,1=10%;R2=25%,2=20%,投资比重各占50%,则:n该证券组合的预期收益率Rp=W1R1+W2R2=20%*50%+25%*50%=22.5%n该证券组合的标准差:n(1)当12=1时, , p=W11 1+W22 2=50%10%+50%20%=15%(2)当12=0.5时,p=13.2%(3)当12=0时,p=11.2%(4)当12=-0.5时,p=8.66%(5)当12=-1时,p=5%(最小)n可见,两证券的相关程度对组合的标准差影响很大。可以得到的结论是:只要选择相关系数小于

13、1的证券组合,便能降低投资风险,只要选择适当,投资组合的风险就可小于单种证券的风险,这就是“投资组合的多元化效应”,也称证券组合的风险分散效应。(二)多项资产组合的风险与收益 E(Rp)=WiRi公式(214)p=Wi2i2+2WiWjijij公式(215)(i,j=1,2,3,nij)由(215)式可知,通过将越多的收益不完全正相关的资产组合在一起,就越能够降低投资的风险。由多种资产构成的组合中,只要组合中两两资产的收益之间的相关系数小于1,组合的标准差一定小于组合中各种资产的标准差的加权平均数。表24美国最近10年标准普尔500指数及一些重要证券的标准差u公式(215)中第一项Wi2i2是

14、单项资产的方差,反映了单项资产的风险,即非系统风险;第二项WiWjijij是两项资产之间的协方差,反映了资产之间的共同风险,即系统风险。u假设Wi=1/n,i2=2,ij代表平均的协方差,则有p2=(1/n)2+(1-1/n)ij公式(216)u当n趋于时,(1/n)2趋于0,即非系统风险逐渐消失,而(1-1/n)趋于1,即协方差不完全消失,而是趋于协方差的平均值ij,它反映了系统风险,其大小用系数表示。二、有效投资组合(一)不同风险证券的有效组合n不同的投资比例,会得到收益和风险不同的证券组合。n所谓有效组合(efficientportfolio/set),是指具有以下两个特征之一的证券组合

15、:n(l)在给定的风险水平下,它能提供最高的预期收益率;n(2)在给定的预期收益率下,它能提供最低的投资风险。BCAFRPpF图2-15(连接A、B两点的曲线称为变换曲线)n理性投资者只会在曲线段CFB上选择其需要的证券组合。人们称曲线段CFB为有效边界(efficientfrontier,又称“效率前沿”),它是所有有效组合的集合。n与只有两个证券不同的是,三个证券的组合集合是平面上的一个区域。ABCXEFGD图2-16投资者不会在阴影区域内选择投资组合,如X点,与G点预期收益率相同,与F点风险程度相同,但X点的风险要比G点大,预期收益率要比F点小。RPPn类似地,由三个以上风险证券构成的投

16、资组合,其组合可行集与三种风险证券构成的组合可行集是相似的,其有效边界也与三种风险证券投资组合的有效边界相似。(二)一种无风险证券与一种风险证券的组合n设某风险证券X X的预期收益率为RxRx,标准差为X X ;某无风险证券F F的预期收益率为R Rf f 。则两者所构成的投资组合的预期收益率:R RP P = = R Rf f(- -)R Rx xp p2 2= =2 2f f 2 2(1-1-)2 2x x2 22 2(- -)xf xf f fx x = =()2 2x x2 2(因f f0 0)显然, ,这一证券组合的预期收益率(Rp)(Rp)与其标准差(p)(p)之间呈线性关系, ,

17、故该证券组合的可行集为直线型( (如图2-17)2-17)GD01x012RxRfRfRfRf图2-17图2-18X0W10W1 w0w0 W W1 1 MABCHY(三)多种风险证券与无风险证券的组合n多种风险证券的组合集合为一区域, , 这一集合中的每一组合Y Y都可看作一个新的风险证券, ,它与收益率R Rf f的无风险证券F F构成一个新的直线型证券组合可行集。n( (上图2-182-18)过纵轴上的点R Rf f,并与风险证券组合的有效边界相切的直线R Rf fM M,便是多种风险证券与无风险证券组合的有效边界。n在共同预期假设前提下,直线R Rf fM M被称为资本市场线。n所谓共

18、同预期假设, ,是指在证券市场上,由于所有投资者所面临的实际情况是相同的,他们用于分析各种证券收益与风险状况的历史资料和现实资料也相同, ,因而可以假设他们对各种风险证券的未来收益和潜在风险的预测和判断也基本相同。n所有投资者所共同持有的风险证券组合M M就被称 为 市 场 投 资 组 合 或 市 场 组 合 (mrket (mrket porfolio)porfolio)。n市场投资组合M M与无风险证券F F的连线R Rf fM M,就是所有投资者选择的证券组合的最佳集合, ,这条直线型证券组合集合就称为资本市场线。n资本市场线的方程为: : Rp = R Rp = Rf f + (R +

19、 (RM M -R -Rf f)/ )/ M M p pn理性的投资者都会选择资本市场线上的一点最优证券组合的选择n投资者将根据自己的风险偏好来安排无风险证券与风险证券的持有比例,选择适当的证券组合。n(1 1)如果投资者选择了纵轴上的R Rf f点,表示投资者将其所有自有资金全部投资于无风险证券F F。n(2)(2)如果投资者选择了直线R Rf fM M上位于切点M M以左的点,这样的证券组合称为放款式证券组合,又称贷出组合。n(3 3)如果投资者选择了切点M M,表示投资者将其所有自有资金全部投资于风险证券组合M Mn(4)(4)如果投资者选择了直线R Rf fM M上位于点M M以右的点

20、,这种证券组合称为借款式证券组合。n上述四种情况下的投资者对收益和风险的态度截然不同, ,他们对风险的承受能力越来越强,对收益的预期越来越高。n在共同预期假设下, ,无论投资者最终如何选择证券组合, ,他们都选择相同的市场证券组合M M,也就是说, ,个人投资者的效用偏好与市场投资组合M M无关。n证券投资决策可分为两部分: :投资决策和金融决策。n将证券投资决策过程分为投资决策和金融决策两部分, ,这就是所谓的分离原理。证券组合中的证券数目n证券组合理论认为, ,不同证券组成的投资组合可以降低投资风险, ,但不能完全消除投资风险。n一般而言, ,组合中包含的证券越多, ,投资风险越小。如果组

21、合中包含了全部证券, ,则投资者只承担系统风险, ,而不承担非系统风险。(一)系统风险(systematicrisk)又称不可分散风险或市场风险,是由于某些因素给市场上所有证券都带来经济损失的可能性。是市场收益率整体变化所引起的个别股票或股票组合收益率的变动性。(二)非系统性风险(unsystematicrisk)又称可分散风险或个别风险,是由于某些因素对单个证券造成经济损失的可能性。资产组合的总风险=系统风险+非系统风险公式(217)投资收益率=无风险收益率+系统风险收益率+非系统风险收益率公式(218)(三)投资组合的风险分散化原理通过增加投资项目可以分散与减少投资风险,但所能消除的只是非

22、系统风险,并不能消除系统风险。美国财务学者研究了投资组合的风险与投资组合股票数目的关系,见表23,图219由此可见,投资风险中重要的是系统风险,投资者所能期望得到补偿的也是这种系统风险。这就是资本资产定价模型的逻辑思想。 表23资产组合数量与资产组合风险的关系图219资产组合数量与资产组合风险的关系证券市场上收益与风险的描述一、系统风险与系数(一)个别证券资产(股票)的系数股票投资组合重要的是该组合总的风险大小,而不是每一种股票个别风险的大小。每一种股票对风险充分分散的资产组合(证券市场上所有股票的组合)的总风险(系统风险)的贡献,可以用系数来衡量。系数反映了个别股票收益的变化与证券市场上全部

23、股票平均收益变化的相关程度。一般是以一些代表性的股票指数作为市场投资组合,再根据股票指数中个别股票的收益率来估计市场投资组合的收益率。美国是以标准普尔500家股票价格指数作为市场投资组合。图220就是一个个股的超额期望收益率与市场组合的超额期望收益率相比较的例子。其中特征线的斜率就是系数,它反映了个股超额收益率的变化相当于市场组合的超额收益率变化的程度。市场组合的m系数为1若=0.5,说明该股票的系统风险(超额收益)只相当与市场组合风险的一半,即若市场组合的风险报酬上升10%,则该种股票的风险报酬只上升5%;同理可解释=1,=1.5,等等。图220个股超额收益率与投资组合超额收益率的关系系数的

24、计算过程相当复杂,一般不由投资者自己计算,而由专门的咨询机构定期公布部分上市公司股票的系数。表24 美国部分股票的系数的估计值 表25中国部分股票系数的估计值(二)资产组合的系数p=Wii公式(219)二、期望收益与风险的关系(资本资产定价模型,CAPM)期望收益与风险之间是正相关的,即只有风险资产的收益可以抵消其风险时,投资者才会持有这种风险资产。(一)市场组合的期望收益与风险报酬市场组合的期望报酬为:Rm=RF+风险溢价公式(220)(二)单个证券的期望收益与风险报酬单个证券的期望收益与系数应为正相关,即Ri=RF+i(Rm-RF)公式(221)公式(221)被称为“资本资产定价模型”(c

25、apitalassetpricingmodel)。单个证券的期望收益取决于以下几个因素:(1)货币时间价值,即无风险收益率RF;(2)市场组合的风险报酬(Rm-RF),即系统风险(3)系数若=0,则有Ri=RF。若=1,则有Ri=Rm。CAPM模型用图来表示就是证券市场线(securitymarketline,SML)。SML的方程形式:Ri=RF+i(Rm-RF)其中:RF是截距,(Rm-RF)是斜率,是变量。图219证券市场线SML表明所有证券的期望收益率都应在这条线上。现在假设有两种股票X和Y未能正确定价,X股价偏低,Y股价偏高,如图所示:图220股票定价的降低和升高上图表现的是证券市场

26、上股价的非均衡状态向均衡状态的转化。经验表明股价的非均衡状态不会很持久(三)资产组合的期望收益与风险CAPM既适用于单个证券,也适用于资产组合。计算资产组合的期望收益时,可以先用CAPM分别计算各种证券的期望收益然后加权平均,也可以先分别计算加权平均的系数然后再用CAPM,计算结果相同。CAPM模型是假定非系统风险可以完全被分散掉,只留下系统风险,这只有在完善的资本市场上才有。若资本市场存在不完善情况,就会妨碍投资者进行有效率的分散化,这样就存在系统风险,用CAPM计算的报酬率就要向上作调整。风险与收益的练习题:1.假定你估计投资于AAEyeEye公司的普通股股票产生的一年期收益率如下:发生的

27、概率0.10.20.40.20.1可能收益率一105203550a.期望收益率和标准差是多少?b.假定题(a)中一年期收益率符合正态分布,则收益率小于等于0的概率是多少?收益率小于10的概率呢?收益率大于40的概率呢?(都假定是正态分布)b对于小于或等于零的收益率,偏离期望收益率有(0%20)1643=-1217个标准差。查正态概率分布表,可得到实际收益率小于或等于零的概率大约为11%。对于小于或等于10的收益率,其偏离期望收益率有(1020)16.43=-0.609个标准差。查正态概率分布表,可得到实际收益率小于或等于10%的概率大约为27%。对于大于或等于40的收益率,其偏离期望收益率(40一20)/16431.217个标准差。查正态概率分布表,可得到实际收益率大于或等于40%的概率大约为11%。2Sorbond实业公司的贝塔是145,无风险收益率是8,市场组合的期望收益率是13。目前公司支付的每股股利是2美元,投资者预期未来几年公司的年股利增长率是10。a.根据资本一资产定价模型,该股票要求的收益率是多少?b.在题(a)确定的收益率下,股票目前的每股市价是多少?c.若贝塔变为0.80,而其他保持不变,则要求的收益率和每股市价又是多少?

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号