第十章胚轴形成第一节果蝇胚轴的形成第二节两栖类胚轴形成第十章胚轴形成

上传人:桔**** 文档编号:586332725 上传时间:2024-09-04 格式:PPT 页数:136 大小:10.24MB
返回 下载 相关 举报
第十章胚轴形成第一节果蝇胚轴的形成第二节两栖类胚轴形成第十章胚轴形成_第1页
第1页 / 共136页
第十章胚轴形成第一节果蝇胚轴的形成第二节两栖类胚轴形成第十章胚轴形成_第2页
第2页 / 共136页
第十章胚轴形成第一节果蝇胚轴的形成第二节两栖类胚轴形成第十章胚轴形成_第3页
第3页 / 共136页
第十章胚轴形成第一节果蝇胚轴的形成第二节两栖类胚轴形成第十章胚轴形成_第4页
第4页 / 共136页
第十章胚轴形成第一节果蝇胚轴的形成第二节两栖类胚轴形成第十章胚轴形成_第5页
第5页 / 共136页
点击查看更多>>
资源描述

《第十章胚轴形成第一节果蝇胚轴的形成第二节两栖类胚轴形成第十章胚轴形成》由会员分享,可在线阅读,更多相关《第十章胚轴形成第一节果蝇胚轴的形成第二节两栖类胚轴形成第十章胚轴形成(136页珍藏版)》请在金锄头文库上搜索。

1、第十章第十章 胚轴形成胚轴形成n n胚胎不但要产生不同类型的细胞(细胞分化),而且要由这些细胞构成功能性的组织和器官并形成有序空间结构的形体模式(body plan)。n n胚胎细胞形成不同组织、器官,构成有序空间结构的过程称为图式形成(pattern formation)。n n在动物胚胎发育中,最初的图式形成主要涉及胚轴(embryonic axes)形成及其一系列相关的细胞分化过程。胚轴指胚胎的前后轴(anterior -posterior axes)和背 腹轴(dorsal -ventral axis)。n n胚轴的形成是在一系列基因的多层次、网络性调控下完成的。爪蟾尾芽期胚胎的前后轴

2、、背腹轴和左右轴(中侧轴),互成垂直角度。第一节第一节 果蝇胚轴的形成果蝇胚轴的形成n n现已筛选到与胚胎前后轴和背腹轴形成有关的约50个母体效应基因(maternal effect gene)和120个合子基因(zygotic gene)。通过对这些基因的研究,我们对果蝇胚轴形成的调控机制已有了一个较为清晰的认识。n n在果蝇最初的发育中,由母体效应基因构建位置信息的基本网络,激活合子基因的表达,控制果蝇形体模式的建立。一、果蝇胚胎的极性一、果蝇胚胎的极性n n果蝇的卵、胚胎、幼虫和成体都具有明确的前-后轴和背-腹轴。n n果蝇形体模式的形成是沿前-后轴和背-腹轴进行的。果蝇胚胎和幼虫沿前-

3、后轴可分为头节、3个胸节和8个腹节,两末端又分化出前面的原头(acron)和尾端的尾节(telson);沿背腹轴分化为背部外胚层、腹侧外胚层、中胚层和羊浆膜。果蝇沿前后轴、背腹轴和中侧轴建立形体模式。果蝇的原肠作用。 AB,腹沟的形成与闭合;C,极细胞的形成;DE,生殖带的迁移和逆转;F,一龄幼虫。果蝇幼虫与成体分节的比较。n n早在20 世纪初,胚胎学家就注意到很多动物定位于受精卵中特定部位的细胞质与胚胎某些特定部位的发育有关。果蝇卵前、后极少量细胞质的流失,会分别造成胚胎缺失头胸部和腹部结构,其他部位细胞质的少量流失都不会影响形体模式形成。这说明果蝇卵子前后极的细胞质中含有与果蝇图式形成有

4、关的信息。n n果蝇早期胚轴形成涉及一个由母体效应基因产物构成的位置信息网络。在这个网络中,一定浓度的特异性母源性RNA和蛋白质沿前 后轴和背 腹轴的不同区域分布,以激活胚胎基因组的程序。n n有4组母体效应基因与果蝇胚轴形成有关,其中3组与胚胎前 后轴的决定有关,另一组基因决定胚胎的背腹轴。n n决定前后轴的3组母体效应基因包括:前端系统(anterior system)决定头胸部分节的区域,后端系统(posterior system)决定分节的腹部,末端系统(terminal system)决定胚胎两端不分节的原头区和尾节。n n另一组基因即背腹系统(dorsoventral system

5、),决定胚胎的背 腹轴。n n在卵子发生过程中,这些母体效应基因的mRNA由滋养细胞合成转运至卵子,定位于卵子的一定区域。这些mRNA编码转录因子或翻译调控蛋白因子,它们在受精后立即翻译且分布于整个合胞体胚盘中,激活或抑制一些合子基因的表达,调控果蝇胚轴的形成。n n这些母体效应基因的蛋白质产物又称为形态发生素(morphogen)。滋养细胞合成mRNA, rRNA,甚至是完整的核糖体,并通过细胞间桥的胼合体,单向转运到卵母细胞里。二、果蝇前二、果蝇前 后轴的形成后轴的形成1. 果蝇前后极性的产生果蝇前后极性的产生n n果蝇的胚胎,幼虫、成体的前后极性均来源于卵子的极性。n n对于调节胚胎前

6、后轴的形成有4个非常重要的形态发生素:BICOID(BCD)和HUNCHBACK(HB)调节胚胎前端结构的形成,NANOS(NOS)和CAUDAL(CDL)调节胚胎后端结构的形成。n n形态发生素调节首先表达的合子基因,即缺口基因(gap gene)的表达。n n不同浓度缺口基因的蛋白质产物引起成对控制基因(pair-rule gene)的表达,形成与前后轴垂直的7条表达带。n n成对控制基因蛋白质产物激活体节极性基因(segment polarity gene)的转录,进一步将胚胎划分为14个体节。n n缺口基因、成对控制基因以及体节极性基因共同调节同源异型基因(homeotic gene)

7、的表达,决定每个体节的发育命运。母源性基因系统突变后产生的结果 。果蝇形体模式建成过程中沿前后轴不同层次基因内的表达。不同组的基因顺序表达沿前后轴建立身体的模式。 2. 前端组织中心前端组织中心 BICOID(BCD)蛋白浓度梯度n n前端系统至少包括4个主要基因,其中bicoid(bcd)基因对于前端结构的决定起关键的作用。BCD具有组织和决定胚胎极性与空间图式的功能。 bcd是一种母体效应基因,其mRNA由滋养细胞合成,后转运至卵子并定位于预定胚胎的前极。exuperantia、swallow和staufen基因与bcd mRNA的定位有关。bcd mRNA由滋养细胞合成,后转移至卵细胞中

8、并定位于卵细胞的前极。bicoid基因对前端结构的发育是必需的 。n nbcd mRNA 3末端非翻译区中含有与其定位有关的序列。n n受精后bcd mRNA迅速翻译,BCD蛋白在前端累积并向后端弥散,形成从前向后稳定的浓度梯度,主要覆盖胚胎前2/3区域。母源性基因bicoid mRNA在卵子中的分布以及受精后biocoid蛋白的浓度梯度。随着BCD蛋白在胚胎中的扩散,这种蛋白质也开始降解它有着大约30分钟的半衰期。这种降解对于建立起前后浓度梯度是非常重要的。 bcd mRNA在受精后迅速翻译,形成BCD蛋白从前到后的梯度。突变型的BCD均匀分布,不能形成前后浓度梯度n nbcd 基因编码的B

9、CD蛋白是一种转录调节因子。另一母体效应基因hunchback(hb)是其靶基因之一, 控制胚胎胸部及头部部分结构的发育。n nhb在合胞体胚盘阶段开始翻译,表达区域主要位于胚胎前部,HB蛋白从前向后也形成一种浓度梯度。hb基因的表达受BCD蛋白浓度梯度的控制,只有BCD蛋白的浓度达到一定临界值才能启动hb基因的表达。母源性bicoid蛋白控制合子型基因hunchback 的表达。 四种形态发生素在果蝇受精卵和胚胎中沿前后轴分布的浓度变化。hunchback又可开启一些缺口基因如giant、krppel和knips等基因的表达。缺口基因按一定顺序沿前后轴进行表达 。krppel基因的活性受hu

10、nchback蛋白的控制。 n n不同靶基因的启动子与BCD蛋白具有不同的亲和力,BCD蛋白的浓度梯度可以同时特异性地启动不同基因的表达,从而将胚胎划分为不同的区域。n nbtd、ems和otd基因很可能也是BCD蛋白的靶基因。浓度梯度建立位置信息的模型3. 后端组织中心:后端组织中心:NANOS蛋白和CAUDAL蛋白浓度梯度n n后端系统包括约10个基因,这些基因的突变都会导致胚胎腹部的缺失。在这一系统中起核心作用的是nanos(nos)基因。n n后端系统在控制图式形成中起的作用与前端系统有相似之处,但发挥作用的方式与前端系统不同。n n后端系统并不像BCD蛋白那样起指导性的作用,不能直接

11、调节合子基因的表达,而是通过抑制一种转录因子的翻译来进行调节。n n在果蝇卵子发生过程中,nos mRNA定位于卵子后极。nos基因的编码产物NANOS(NOS)蛋白活性从后向前弥散形成一种浓度梯度。NOS蛋白的功能是在胚胎后端区域抑制母性hb mRNA的翻译。Nanos mRNA也是由滋养细胞合成,后转运至卵细胞中,定位于卵细胞的后极。母源性hunchback蛋白浓度梯度的建立 n nhb基因是在卵子发生过程中转录的母体效应基因,hb mRNA在卵子中是均匀分布的。在卵裂阶段HB蛋白开始合成。分布在胚胎后部的hb mRNA的翻译被NOS的浓度梯度所抑制,而在前部BCD蛋白浓度梯度可以激活合子

12、hb基因的表达。结果HB蛋白的分布区域只位于胚胎前半部分。n nNOS对hb和bcd基因表达的抑制作用是在翻译水平上进行的。n n另一个重要的母源性产物caudal(cdl)mRNA最初也是均匀分布于整个卵质内,BCD能抑制cdl mRNA的翻译。在BCD活性从前到后降低的浓度梯度作用下形成CDL蛋白从后到前降低的浓度梯度。n ncdl基因的突变导致腹部体节发育不正常。四种形态发生素在果蝇受精卵和胚胎中沿前后轴分布的浓度变化。前端系统和后端系统蛋白因子之间的翻译调控确立了果蝇的前后轴。4. 末端系统:末端系统:TORSO信号途径信号途径n n末端系统包括约9个母体效应基因。这个系统基因的失活会

13、导致胚胎不分节的部分,即前端原头区和后端尾节,缺失。在这一系统中起关键作用的是torso(tor)基因。n n如果前端和后端系统都失活,果蝇胚胎仍可产生某些前后图式,形成具有两个尾节的胚胎。TorsoTorso系统基因的失活会导致胚胎不分节的部分,即系统基因的失活会导致胚胎不分节的部分,即前前端原头区和后端尾节,缺失端原头区和后端尾节,缺失n ntor基因编码一种跨膜酪氨酸激酶受体(receptor tyrosine kinase,RTK),在整个合胞体胚胎的表面表达。n n其NH2基端位于细胞膜外,COOH基端位于细胞膜内。当胚胎前、后端细胞外存在某种信号分子(配体)时可使TOR特异性活化,

14、最终导致胚胎前、后末端细胞命运的特化。torso-like (tsl)基因可能编码这一配体。末端系统:Torso信号途径受体蛋白torso参与胚胎末端的特化。 n nTOR与配体结合后,引起自身磷酸化,经一系列信号传递,最终激活合子靶基因的表达。在卵子发生过程中,tsl在卵子前极的边缘细胞和卵室后端的极性滤泡细胞中表达。TSL蛋白被释放到卵子两极处的卵周隙中,由于TOR蛋白过量,TSL不会扩散末端区以外,从而保证tor基因只在末端区被活化。n n除TSL外,末端系统所需要的其他成分如trk、fssDN和fssDph在胚胎中都是均匀分布的。Torso信号传导途径影响果蝇胚胎前后极性的母体效应基因

15、A,母源性转录因子调控缺口基因的转录;B,母源性转录因子在确定缺口基因表达位置时发挥重要作用。三、果蝇背三、果蝇背 腹轴的形成腹轴的形成n n与果蝇胚轴形成有关的4组母体效应基因中,背腹系统最为复杂,涉及约20个基因。其中dorsal(dl)等基因的突变会导致胚胎背部化,即产生具有背部结构而没有腹部结构的胚胎。与此相反,cactus等基因的突变则引起胚胎腹部化,产生只具有腹部结构的胚胎。n n背腹系统的作用方式与末端系统有相似之处。通过一种局部分布的信号分子,即定位于卵子腹侧卵黄膜上的配体激活分布于腹侧卵黄膜上的受体,进而调节合子基因的表达。n n背-腹系统对合子靶基因表达的调节方式与前端系统

16、相似,通过一种转录因子的浓度梯度来完成。n n但背腹系统浓度梯度形成的方式却与前端系统完全不同。dl基因是这一信号传导途径的最后一个环节,它编码一种转录调节因子。dl mRNA和DL蛋白在卵子中是均匀分布。当胚胎发育到第9次细胞核分裂之后,细胞核迁移到达合胞体胚盘的外周皮质层,在腹侧的DL蛋白开始往核内聚集,但背侧的DL蛋白仍位于胞质中。从而,使DL蛋白在细胞核内的分布沿背腹轴形成一种浓度梯度。DL蛋白定位于细胞核中的机制。cactus基因与DL蛋白能否进入细胞核这一调控过程有关。CACTUS与DL结合时,DL蛋白不能进入细胞核。n ntoll基因在这一系统中具有及其重要的作用。TOLL是一种

17、跨膜受体蛋白,其配体分子也是母源性产物,是sptzle基因编码蛋白的裂解片段。Sptzle蛋白由卵室腹侧的特异性滤泡细胞产生,在胚胎发育的早期被释放定位于卵周隙中。 Sptzle蛋白与DL受体结合并使之活化,进而激发一系列细胞内信号传导,最终使CACTUS蛋白降解,DL蛋白释放进而进入细胞核。n nDL蛋白的浓度梯度通过对下游靶基因的调控,控制沿背-腹轴产生区域特异性的位置信息。这种浓度梯度在腹侧组织中可活化合子基因twist (twi)和snail (sna)的表达,同时抑制dpp和zen基因的表达,进而指导腹部结构的发育。dpp和zen基因在胚胎背侧表达,指导背部结构的发育。Toll蛋白的

18、活化导致沿背腹轴方向细胞核之间dorsal蛋白梯度的形成。 果蝇核蛋白dorsal沿背腹轴的梯度将身体分为不同部分的模型。 twist和dpp等基因的激活解读dorsal蛋白的浓度梯度Dpp蛋白的活性在sog蛋白的拮抗作用下局限于胚胎最背部的区域。 卵子发生过程中体轴的极化卵子发生过程中体轴的极化n n果蝇卵子发生过程中,母源性的mRNA和蛋白是如何进入卵子的?它们又是如何定位于卵子中特定位置的呢?n n滋养细胞(nurse cell)合成大量的蛋白和mRNA通过胞质桥(cytoplasmic bridge)转运至卵细胞中。滤泡细胞在决定卵轴极性方面发挥这重要的作用。果蝇卵子的发育果蝇卵子与1

19、5个滋养细胞相连,被一层滤泡细胞(700个左右)覆盖。卵细胞和滤泡细胞协同作用确定将来卵子的背腹轴。图示一个基因仅在卵细胞背前方的滤泡细胞中表达。n n果蝇的卵细胞进入卵室(egg chamber)的后端,与后端的滤泡细胞建立联系。但卵细胞与前端的滤泡细胞被滋养细胞隔开。卵细胞中合成gurken mRNA,而gurken蛋白在局部分泌。Gurken蛋白与后极滤泡细胞上表达的受体torpedo的结合引起相邻的滤泡细胞特化为后极滤泡细胞。n n后极滤泡细胞发送信号至卵细胞,重排细胞骨架微管,从而将BCD和oskar蛋白分别定位于卵的前端和后端确定了卵的前后轴。随后卵细胞的核运动到将来的背侧,gur

20、ken蛋白的局部释放使相邻的滤泡细胞特化为背部的滤泡细胞,卵子将来的背方也得到确定。果蝇卵子发生过程中前后和背腹轴的特化。滤泡细胞的相互作用可引起卵母细胞前后和背腹轴的特化 。 n n在卵子发生过程中,滤泡细胞背腹极性的获得是由卵细胞的信号调控的。这个过程与TOR途径有相似之处,但是信号传递的方式却相反。这个信号传递途径至少包括7个基因,这些基因的突变会影响卵壳和卵的极性。grk、top或cni的突变产生腹部化的胚胎,而fs(1)k10、sqd、spir或capu的失活则产生背部化的卵和胚胎。四、分节基因与胚胎体节的形成四、分节基因与胚胎体节的形成n n分节基因的功能是把早期胚胎沿前 后轴分为

21、一系列重复的体节原基。分节基因的突变可使胚胎缺失某些体节或体节的某些部分。根据分节基因的突变表型及作用方式可分为三类:缺口基因、成对控制基因和体节极性基因,这三类基因的调控是逐级进行的。n n首先由母体效应基因控制缺口基因的活化,其次缺口基因之间互相调节彼此的转录且共同调节成对控制基因的表达,然后成对控制基因之间相互作用,把胚体分隔成为一系列重复的体节,并且进一步控制体节极性基因的表达。所以,胚盘末期的每一个体节原基都具有其独特基因表达的组合,从而决定每个体节的特征。n n缺口基因(gap gene)的表达区域为一些较宽的区域,每个区域的宽度约相当于3个体节,表达区之间可有部分重叠。当缺口基因

22、突变时胚胎缺失相应的区域。缺口基因直接受母体效应基因的调控。 缺口基因最初通常在整个胚胎中都有较弱的表达,然后随着卵裂的进行逐渐变成一些不连续的区域。缺口基因的表达最初由母体效应基因启动,其表达图式的维持可能依赖于缺口基因之间的相互作用。Gap基因Krppel在果蝇胚胎发育过程中不同时期的表达。n n成对控制基因(pair-rule gene)的表达区域以两个体节为单位且具有周期性,在相互间隔的一个副体节中表达。这些基因的功能是把缺口基因确定的区域进一步分成体节。 成对控制基因的表达是胚胎出现分节的最早标志,它们在细胞化胚盘期第13次核分裂时表达。表达图式沿前后轴形成一系列斑马纹状的条带,将胚

23、胎分为预定体节。hunchback又可开启一些缺口基因如giant、krppel和knips等基因的表达。缺口基因按一定顺序沿前后轴进行表达 。果蝇胚胎进行细胞化之前 成对控制基因even-skipped (blue)和fushi tarazu(brown)的条纹状表达模式。 Pair-rule 基因fushi tarazu在果蝇胚胎发育不同时期的表达。有三个基因直接受到缺口基因的调控,即hairy、even-skipped(eve)和runt基因,称为初级成对控制基因。缺口基因可以识别初级成对控制基因的启动子。关于缺口基因的作用方式还不是很清楚。有些证据表明缺口蛋白对成对控制基因表达起抑制作

24、用,但也有实验表明缺口基因既可以在一定的带区活化基因表达,又可同时抑制其他表达带区的形成。成对控制基因hairy的表达模式缺口基因的作用方式:既可以在一定的带区活化既可以在一定的带区活化基因表达,又可同时抑制其他表达带区的形成。基因表达,又可同时抑制其他表达带区的形成。缺口基因蛋白对even-skipped基因表达的调控。n n体节极性基因(segment polarity gene)在每一体节的特定区域细胞中表达。engrailed(en)、hedgehog (hh)和wingless(wg)基因是最重要的体节极性基因。前两者在每一副体节最前端的一列细胞中表达,而后者在每一副体节的最后一列细

25、胞中表达;这两个基因的表达界限正好确立了副体节的界线。n n果蝇晚期胚胎和幼体的每个体节由前一副体节的后区和后一副体节的前区构成。engrailedengrailed在在每一副体节每一副体节最前端的一最前端的一列细胞中表列细胞中表达,确立了达,确立了每一副体节每一副体节的界限。的界限。果蝇晚期胚胎(11期)中engrailed基因的表达。 体节极性基因engrailed在果蝇胚胎发育不同时期的表达。体节极性基因的表达区域。 hedgehog、wingless和engrailed基因和蛋白在区室分界处的相互作用控制小齿模式的建成。 engrailed、wingless和hedgehog的相互作用

26、hedgehog信号途径。 果蝇早期胚胎、晚期胚胎和成体中副体节和体节的对应关系。 n n在体节界限确定之后每个体节的结构被进一步特化,此过程由主调节基因(master regulatory gene)或称为同源异型选择者基因调控完成。同源异型选择者基因的突变或异位表达可引起同源转化现象(homeotic transformation)。同源异型选择者基因表达图式的建立受成对控制基因和缺口基因的调控。n n果蝇大部分同源异型选择者基因位于3号染色体相邻的两个区域,其一为触角足复合体Antp-C,另一个为双胸复合体BX-C,二者统称同源异型复合体HOM-C。触角足复合体触角足复合体AntpAnt

27、p-C-C和双胸复合体和双胸复合体BX-CBX-C同源异型框同源异型框选择者基因选择者基因双胸复合体双胸复合体BX-CBX-C的突变的突变导致翅膀和平衡棒之间导致翅膀和平衡棒之间的的同源转化现象同源转化现象。n nHOM- C基因的结构是十分复杂的,有的基因有多个启动子和多个转录起始位点。 其另一个重要特征是都含有一段的保守序列,称为同源异型框(homeobox)。含有同源异型框的基因统称为同源异型框基因(homeobox gene)。n n由同源异型框编码的同源异型结构域(homeodomain)可形成与DNA特异性结合的螺旋-转角-螺旋结构(helix-turn-helix)。HOM-C同

28、源异型框形成与DNA特异结合的螺旋-转角-螺旋结构。果蝇HOM-C的区域表达进一步特化体节。果蝇HOM-C的表达使每一个体节被进一步特化,这一机制在无脊椎动物和脊椎动物中都十分保守。Hox基因在小鼠体节中的表达n n目前对果蝇胚胎早期发育机制已基本了解,胚胎的前 后轴和背 腹轴分别独立地由母体效应基因产物决定。这些母体效应基因主要编码转录因子,它们的产物通常形成一种浓度梯度并产生特异的位置信息,以进一步激活一系列合子基因的表达。随着这些基因的表达,胚胎被分成不同的区域。每个区域表达特异性基因的组合,沿前 后轴形成间隔性的图式,即体节的前体形式。最后每一体节通过HOM-C基因的特异性表达而确定其

29、特征。第二节第二节 两栖类胚轴形成两栖类胚轴形成n n两栖类是调整型胚胎发育的典型模型,也是在胚轴形成机制方面了解较多的脊椎动物。n n脊椎动物胚轴的形成不仅与定位于囊胚期大量分裂球中的各种决定因子相关,更重要的作用机制则存在于以后的发育阶段,发生在邻近细胞之间的一系列相互作用。n n两栖类胚胎的背- 腹轴和前-后轴是由受精时卵质的重新分布而决定的。受精时在精子入卵处的对面产生有色素差异的灰色新月区,由此标志预定胚胎的背侧,精子进入的一侧发育成为胚胎的腹侧。在动物极附近的背侧形成头部,而与其相反的一侧形成尾,从而形成胚胎的背-腹轴和前-后轴。中侧轴或左右轴是随着脊索的形成而确定的。受精时的皮层

30、转动形成两栖类的左右对称。一、组织者和Nieuwkoop 中心n n在原肠作用过程中,由组织者(organizer)诱导背部外胚层形成中枢神经系统的原基神经管,并作用于侧中胚层共同形成背-腹轴和前-后轴。n n背唇细胞及其衍生物脊索和脊索中胚层虽然还不足以作为整个胚胎的诱导者,在以后器官原基形成和器官形成中都存在诱导作用,但组织者启动了胚胎发育中的一系列诱导事件。组织者细胞在早期胚胎发育中的重要功能:n n1)组织者能够启动原肠作用;n n2)组织者细胞有能力发育成背部中胚层包括前脊索板,脊索中胚层等;n n3)组织者能够诱导外胚层背部化形成神经板,并使后者发育为神经管。n n4) 组织者能够

31、诱导其周围的中胚层背部化,分化为侧板中胚层,而不是腹侧中胚层。n n爪蟾和其他脊椎动物胚胎前-后轴的形成在背-腹轴形成之后,胚胎的背部一旦建立随即开始中胚层细胞的内卷运动,并建立前-后轴。n n最先经过胚孔背唇迁入的中胚层细胞产生前端结构,从侧唇和腹唇迁入的中胚层细胞形成后端结构。2. Nieuwkoop中心n n在两栖类囊胚中最靠近背侧的一群植物半球细胞,对组织者具有特殊的诱导能力,称为Nieuwkoop中心(Nieuwkoop center)。 Nieuwkoop中心是兼具动物极和植物极细胞质的特殊区域,含有背部中胚层诱导信号。n n原肠作用过程中新形成的中胚层是由其下方的植物极半球预定内

32、胚层细胞对动物半球预定外胚层细胞诱导的结果。爪蟾组织者和Nieuwkoop中心及中胚层诱导模型二、两栖类胚轴形成的机制1. Nieuwkoop中心的分子生物学研究n n爪蟾的内胚层细胞通过诱导预定中胚层细胞表达Xenopus Brachyury (Xbra)基因,进而诱导中胚层的形成。n n最靠近背侧的植物半球细胞,由于表达一些特殊的细胞因子而形成Nieuwkoop中心。-CATENIN是Nieuwkoop中心的一个主要细胞因子。组织者的精细结构。组织者特异基因的表达,可以把早期组织者细分成含有不同信息组合的亚区。n n-catenin是一种母体效应基因,其编码的蛋白质-CATENIN既能锚定

33、细胞膜上的钙粘着蛋白,又是一个核内转录因子。n n-CATENIN在受精时卵质的旋转移动过程中在预定胚胎背部累积,在整个早期卵裂阶段仍然主要在胚胎背部累积。到卵裂晚期只有Nieuwkoop中心的细胞具有-CATENIN 。-CATENIN 对于形成背部结构是必要的。-CATENIN在背腹轴特化中的作用n n-CATENIN属于Wnt信号传导途径的一个分子,糖原合成激酶-3 (GSK-3)对-CATENIN有负调控作用,进而对背侧细胞的分化起抑制作用。在腹侧细胞中GSK-3介导的磷酸化作用引起-CATENIN的降解,而在背侧细胞中由于存在GSK-3的抑制因子Disheveled (DSH)蛋白,

34、所以背侧的-CATENIN不会被降解。DSH蛋白开始存在于爪蟾未受精卵植物半球的皮层部,受精时沿微管迁移到胚胎的背侧起作用。 CATENIN是WNT信号途径中的成分。DSH将 CATENIN定位于胚胎背部的机制1DSH将 CATENIN定位于胚胎背部的机制2DSH将 CATENIN定位于胚胎背部的机制3n n-CATENIN与一种普遍存在的转录因子TCF3结合形成的复合物能够激活对胚轴形成具有重要作用的其他基因,如siamois (sms)基因。SMS能激活goosecoid基因的表达。n ngoosecoid基因是Nieuwkoop中心分泌蛋白因子作用的主要靶基因之一。gcd mRNA表达的

35、区域与组织者的范围有关。GCD能够激活脑形成关键基因Xotx2,使其在前端中胚层和预定脑外胚层表达。背部中胚层诱导形成组织者的可能机制n ngcd基因的激活也同时受到定位于植物半球和Nieuwkoop中心的TGF家族蛋白产物的协同作用。这里所涉及的TGF 蛋白因子是Vg1、VegT和Nodal相关蛋白。n n-CATENIN与VG1、VEGT信号相互作用的结果形成Nodal-相关蛋白从背侧到腹侧的浓度梯度。Nodal-相关蛋白的浓度梯度使中胚层细胞分化。含有大量Nodal相关蛋白的分化为组织者,较少的分化为侧板中胚层,不含Nodal相关蛋白的分化成腹侧中胚层。 -CATENIN-CATENIN

36、与与TGFTGF 家族蛋白协同作用诱家族蛋白协同作用诱导组织者形成的机制导组织者形成的机制n n总之,为维持正常的发育,在胚胎背部细胞中必须含有-CATENIN,并使sms基因表达,SMS与TGF-基因家族的蛋白质协同作用使gcd基因激活,在SMS和GCD等共同作用下才能形成组织者。组织者的形成涉及多种基因的激活,存在于Nieuwkoop中心的分泌蛋白激活位于其上方中胚层细胞中一系列转录因子,后者再激活编码组织者分泌产物的一些基因。2. 第一类组织者分泌性蛋白因子和BMP抑制因子n nBMP4是最重要的上皮分化和腹侧化诱导因子。对于神经发生而言,它是抑制因子或抗神经化因子,其功能与组织者正好相

37、反。n n组织者分泌的NGN、CHD、Nodal相关蛋白3和FST对BMP4均有抑制作用。因此组织者的功能是分泌抑制诱导作用的可溶性蛋白因子,而不是直接诱导中枢神经系统的发生。爪蟾卵经紫外线照射后引起背部结构的缺失,可以由注射NGN蛋白而挽救。NGN对背部结构的诱导呈剂量依赖性。NGN在组织者区的定位Chordin mRNA在组织者区的定位组织者区蛋白质因子的相互作用。3. 第二类组织者分泌性蛋白因子和WNT抑制因子n n咽鳃区内胚层和头部中胚层形成的内-中胚层组织构成胚孔背唇的前缘。这些细胞不仅能诱导最前端的头部结构,而且还能够阻滞WNT信号传导途径。WNT家族的成员之一WNT8与BMP4相

38、似,能够抑制神经诱导。n n组织者分泌的CERBERUS(CBR)和内中胚层分泌的FRZB和DICKKOPF(DCK)蛋白因子可以组织WNT信号传导途径。Xwnt8引起中胚层的腹部化并抑制头部结构的形成Xwnt8在缘区的表达注射CERBERUSCERBERUS(CBRCBR)可诱导出两个头部结构FRZBFRZB的表达与的表达与功能。注射功能。注射FRZBFRZB引起躯干引起躯干部形成的抑制部形成的抑制外胚层分化为上皮和神经组织的不同机制4. 后端化因子n n随着前端神经系统的区域性特化神经管,后端开始进行分化。后端的分化由胚胎后端产生后端化因子进行调控。n n成纤维细胞生长因子eFGF、WNT

39、3a和视黄酸(Retinoic acid,RA)都是后端化因子。RA主要作用于后脑的图式形成;eFGF对于脊髓的分区最为重要;而WNT3a可以抑制前端控制基因的表达,还可以协调RA和eFGF的作用。后端化因子RA的作用5. 中侧轴特化因子n n脊椎动物中侧轴形成的关键事件都是原肠胚左侧侧板中胚层表达的nodal-相关基因调控。n n爪蟾的nodal-相关基因-1(Xnr-1)的表达区域仅限于原肠胚左侧,Xnr-1激活pitx-2在胚胎左侧专一性表达。VG1蛋白可以增加胚胎左右对称的特化,异位表达VG1可导致胚胎左右逆转。Pitx2决定心脏弯曲和肠盘绕的方向n n尽管蛙、斑马鱼、鸡和小鼠体轴形成的机制存在差异,但是不同物种之间胚体图式形成的机制却具惊人的相似性。在此发育过程中,都涉及母体效应基因的产物母体效应决定子的定位、外源信号的影响和细胞间的相互作用,涉及一系列信号传导分子的作用。有关这些信号传导机制的研究是目前最活跃的领域之一。

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号