第二节分子的立体构型(1、2、3课时新

上传人:鲁** 文档编号:570151777 上传时间:2024-08-02 格式:PPT 页数:61 大小:3.93MB
返回 下载 相关 举报
第二节分子的立体构型(1、2、3课时新_第1页
第1页 / 共61页
第二节分子的立体构型(1、2、3课时新_第2页
第2页 / 共61页
第二节分子的立体构型(1、2、3课时新_第3页
第3页 / 共61页
第二节分子的立体构型(1、2、3课时新_第4页
第4页 / 共61页
第二节分子的立体构型(1、2、3课时新_第5页
第5页 / 共61页
点击查看更多>>
资源描述

《第二节分子的立体构型(1、2、3课时新》由会员分享,可在线阅读,更多相关《第二节分子的立体构型(1、2、3课时新(61页珍藏版)》请在金锄头文库上搜索。

1、第二节第二节 分子的立体构型分子的立体构型第一课时第一课时 价层电子对互斥理论价层电子对互斥理论H2OCO2直线形直线形180180V V形形105105HCHONH3平面三角形平面三角形120120三角锥形三角锥形 107107一、形形色色的分子一、形形色色的分子五原子分子立体结构五原子分子立体结构最常见的是最常见的是正四面体正四面体CH4一、形形色色的分子一、形形色色的分子正四面体正四面体在多原子构成的分子中,由于原子间排列的空间顺序不一样,使得分子有不同的结构,这就是所谓的分子的立体构型。C60C20C40C70资料卡片:资料卡片:形形色色的分子形形色色的分子C6H12S8 同为三原子分

2、子,同为三原子分子,CO2 和和 H2O 分子的空间结构却不分子的空间结构却不同,什么原因?分析中心原子的价电子是否全部参加成同,什么原因?分析中心原子的价电子是否全部参加成键?键? 同为四原子分子,同为四原子分子,CH2O与与 NH3 分子的的空间结构分子的的空间结构也不同,什么原因?也不同,什么原因?二、价层电子对互斥理论二、价层电子对互斥理论1.1.内容内容对ABn型的分子或离子,型的分子或离子,中心原子中心原子A价价层电子子对(包括成(包括成键键电子子对和未成和未成键的的孤孤对电子子对)之)之间由于存在排斥力,将使分子的几何构型由于存在排斥力,将使分子的几何构型总是采取是采取电子子对相

3、互排斥最小的那种构型,相互排斥最小的那种构型,以使彼此之以使彼此之间斥斥力最小,力最小,分子体系分子体系能量最低能量最低能量最低能量最低, ,最稳定。最稳定。最稳定。最稳定。键电子子对和和孤孤对电子子对排斥力最小排斥力最小二、价层互斥理论二、价层互斥理论2.2.价层电子对(价层电子对(键电子对键电子对和未成键的和未成键的孤对电子对孤对电子对)代表代表物物电子式电子式中心原子结合中心原子结合原子数原子数键电子子对孤孤对电子子对价层电价层电子对数子对数H2ONH3CO2CH4:H O H:H N H:H:H C H:HHO C O: : :2342224314404202=键个数键个数+中心原子上

4、的孤对电子对个数中心原子上的孤对电子对个数价层电子对数价层电子对数键电子对数键电子对数 = 与中心原子结合的原子数与中心原子结合的原子数中心原子上的孤电子对数中心原子上的孤电子对数 =(a-xb)2.2.成键成键键电子对键电子对和未成键的和未成键的孤对电子对孤对电子对键电子对数键电子对数 = 与中心原子结合的原子数与中心原子结合的原子数a: 对于原子:为中心原子的价电子数对于原子:为中心原子的价电子数(对于阳离子:对于阳离子:a为中心原子的价电子数减去离子为中心原子的价电子数减去离子的电荷数;对于阴离子:的电荷数;对于阴离子: a为中心原子为中心原子 的价电子的价电子数加上离子的电荷数)数加上

5、离子的电荷数)x 为与中心原子结合的原子数为与中心原子结合的原子数b 为与中心原子结合的原子最多能接受的电子数为与中心原子结合的原子最多能接受的电子数(H为为1,其他原子为,其他原子为“8-该原子的最外层电子数)该原子的最外层电子数)=键个数键个数+中心原子上的孤对电子对个数中心原子上的孤对电子对个数价层电子对数价层电子对数分子或分子或离子离子中心原中心原子子 a x b中心原子中心原子上的孤电上的孤电子对数子对数 H2O O SO2 S NH4+ N CO32- C 6 15-1=4 0 4+2=6 0224132孤电子对的计算孤电子对的计算 6 221=(a-xb)二、价层电子对互斥理论二

6、、价层电子对互斥理论 剖析内容剖析内容对ABn型的分子或离子,型的分子或离子,中心原子中心原子A价价层电子子对(包括成(包括成键键电子子对和未成和未成键的的孤孤对电子子对)之)之间由于存在排斥力,将使分子的几何构型由于存在排斥力,将使分子的几何构型总是采取是采取电子子对相互排斥最小的那种构型,以使彼此之相互排斥最小的那种构型,以使彼此之间斥斥力最小,分子体系力最小,分子体系能量最低能量最低能量最低能量最低, ,最稳定。最稳定。最稳定。最稳定。排斥力最小排斥力最小A3.3.价电子对的空间构型即价电子对的空间构型即VSEPRVSEPR模型模型电子对数目电子对数目电子对数目电子对数目:2 3 4VS

7、EPRVSEPR模型模型模型模型: 二、价层电子对互斥理论二、价层电子对互斥理论直线直线直线直线平面三角形平面三角形平面三角形平面三角形正四面体正四面体正四面体正四面体二、价层电子对互斥理论二、价层电子对互斥理论分子或分子或离子离子键键电子对电子对数数孤电子对孤电子对数数VSEPR模模型及名称型及名称分子的立体分子的立体构型及名称构型及名称CO2CO32-SO24. 4. VSEPRVSEPR模型应用模型应用预测分子立体构型预测分子立体构型232001COOCOOOSOO直线形直线形直线形直线形平面三角形平面三角形平面三角形平面三角形V形形平面三角形平面三角形中心原子的孤对电子也要占据中心原子

8、的空间,中心原子的孤对电子也要占据中心原子的空间,并与成并与成并与成并与成键电子对互相排斥键电子对互相排斥键电子对互相排斥键电子对互相排斥。推测分子的立体模型必须略去。推测分子的立体模型必须略去。推测分子的立体模型必须略去。推测分子的立体模型必须略去VSEPRVSEPR模型中的孤电子对模型中的孤电子对模型中的孤电子对模型中的孤电子对二、价层互斥理论二、价层互斥理论分子或分子或离子离子键键电子对电子对数数孤电子对孤电子对数数VSEPR模模型及名称型及名称分子的立体分子的立体构型及名称构型及名称CH4NH3H2O4.4.价电子对的空间构型即价电子对的空间构型即VSEPRVSEPR模型应用模型应用4

9、32012CHHHHNHHHOHH四面体四面体正四面体正四面体四面体四面体三角锥形三角锥形四面体四面体V形形应用反馈应用反馈化学式化学式中心原子中心原子 孤对电子孤对电子数数键电子键电子对数对数VSEPR模型模型H H2 2S SBFBF3 3NHNH2 2- -2023空间构型空间构型V V形形平面三角形平面三角形 V 形形22平面三角形平面三角形四面体四面体四面体四面体ABn 型分子的型分子的VSEPRVSEPR模型模型和立体结构和立体结构VSEPRVSEPR模型模型成键电子对数孤对电子对数分子类型 电子对的排布模型 立体结构立体结构 实 例 23平面平面三角三角形形2 0 AB2直线形直

10、线形 CO23 0 AB32 1 AB2价层电子对数平面三角形平面三角形 BF3V V形形SO2直线直线形形价层电子对数 VSEPRVSEPR模型模型成键电子对数 孤对电子对数 分子类型 电子对的排布分子构型 实 例模型 4四四面面体体4 0 AB43 1 AB32 2 AB2正四面体正四面体 CH4三角锥形三角锥形 NH3V V形形H2O1.若若ABn型分子的中心原子型分子的中心原子A上没有未用于形上没有未用于形成共价键的孤对电子,运用价层电子对互斥模成共价键的孤对电子,运用价层电子对互斥模型,下列说法正确的(型,下列说法正确的( ) A.若若n=2,则分子的立体构型为则分子的立体构型为V形

11、形 B.若若n=3,则分子的立体构型为三角锥形则分子的立体构型为三角锥形 C.若若n=4,则分子的立体构型为正四面体形则分子的立体构型为正四面体形 D.以上说法都不正确以上说法都不正确C2.用价层电子对互斥模型判断用价层电子对互斥模型判断SO3的分子构型的分子构型 A、正四面体形、正四面体形 B、V形形 C、三角锥形、三角锥形 D、平面三角形、平面三角形D课堂练习:课堂练习:1、多原子分子的立体结构有多种,三原子分子的立体结构有、多原子分子的立体结构有多种,三原子分子的立体结构有 形和形和 形,大多数四原子分子采取形,大多数四原子分子采取 形和形和 形两种立体结构,五原子分子的立体结构中最常见

12、的是形两种立体结构,五原子分子的立体结构中最常见的是 形。形。 2 、下列分子或离子中,不含有孤对电子的是、下列分子或离子中,不含有孤对电子的是 A、H2O、B、H3O+、C、NH3、D、NH4+3 、下列分子、下列分子BCl3、CCl4、H2S、CS2中中,其键角由小到其键角由小到大的顺序为大的顺序为 4、以下分子或离子的结构为正四面体,且键角为、以下分子或离子的结构为正四面体,且键角为10928 的是的是 CH4 NH4+ CH3Cl P4 SO42-A、 B、 C、 D、直线V平面三角三角锥 DC正四面体正四面体第二节第二节 分子的立体构型分子的立体构型第二课时第二课时杂化理论杂化理论活

13、动:请根据价层电子对互斥理论分析活动:请根据价层电子对互斥理论分析CHCH4 4的立体构型的立体构型1.1.写出碳原子的核外电子排布图,思考为什么写出碳原子的核外电子排布图,思考为什么碳原子与氢原子结合形成碳原子与氢原子结合形成CHCH4 4,而不是,而不是CHCH2 2 ?C原子轨道排布图原子轨道排布图1s22s22p2H原子轨道排布图原子轨道排布图1s1按照我们已经学过的价键理论,甲烷的按照我们已经学过的价键理论,甲烷的4个个C H单键单键都应该是都应该是键,然而,碳原子的键,然而,碳原子的4个价层原子轨道是个价层原子轨道是3个相互垂直的个相互垂直的2p 轨道和轨道和1个球形的个球形的2s

14、轨道,用它们跟轨道,用它们跟4个氢原子的个氢原子的1s原子轨道重叠,不可能得到四面体构型原子轨道重叠,不可能得到四面体构型的甲烷分子的甲烷分子CC为了解决这一矛盾,鲍林提出了杂化轨道理论为了解决这一矛盾,鲍林提出了杂化轨道理论sp3C:2s22p2 由由1个个s轨道和轨道和3个个p轨道轨道混杂混杂并重新组合成并重新组合成4个能量与个能量与形状完全相同的轨道。形状完全相同的轨道。我们把这种轨道称之为我们把这种轨道称之为 sp3杂化杂化轨道轨道。为了四个杂化轨道在空间尽可能远离,使轨道间的排斥为了四个杂化轨道在空间尽可能远离,使轨道间的排斥最小,最小,4个杂化轨道的伸展方向成什么立体构型个杂化轨道

15、的伸展方向成什么立体构型? 四个四个H原子分别以原子分别以4个个s轨道与轨道与C原子上的四个原子上的四个sp3杂化轨道相互重叠后,就形成了四个性质、杂化轨道相互重叠后,就形成了四个性质、能量和键角都完全相同的能量和键角都完全相同的S-SP3键,从而构成一键,从而构成一个正四面体构型的分子。个正四面体构型的分子。 10928三、杂化理论简介三、杂化理论简介1.1.概念:概念:在形成分子时,在外界条件影响下若干在形成分子时,在外界条件影响下若干不同不同类型能量相近的原子轨道类型能量相近的原子轨道混合起来,重新组合成一组混合起来,重新组合成一组新轨道的过程叫做原子轨道的杂化,所形成的新轨道新轨道的过

16、程叫做原子轨道的杂化,所形成的新轨道就称为杂化轨道。就称为杂化轨道。2.2.要点:要点:(1 1)参与参加杂化的各原子轨道)参与参加杂化的各原子轨道能量要相近能量要相近(同一(同一能级组或相近能级组的轨道);能级组或相近能级组的轨道);(2 2)杂化前后原子轨道数目不变:参加杂化的轨道数)杂化前后原子轨道数目不变:参加杂化的轨道数目目等于等于形成的杂化轨道数目;但杂化轨道改变了原子形成的杂化轨道数目;但杂化轨道改变了原子轨道的形状方向,在成键时更有利于轨道间的重叠;轨道的形状方向,在成键时更有利于轨道间的重叠;三、杂化理论简介三、杂化理论简介2.2.要点:要点:(1 1)参与参加杂化的各原子轨

17、道)参与参加杂化的各原子轨道能量要相近能量要相近(同一(同一能级组或相近能级组的轨道);能级组或相近能级组的轨道);(2 2)杂化前后原子轨道数目不变:参加杂化的轨道数)杂化前后原子轨道数目不变:参加杂化的轨道数目目等于等于形成的杂化轨道数目;但杂化轨道改变了原子形成的杂化轨道数目;但杂化轨道改变了原子轨道的形状方向,在成键时更有利于轨道间的重叠;轨道的形状方向,在成键时更有利于轨道间的重叠;(3 3)杂化前后原子轨道为使相互间)杂化前后原子轨道为使相互间排斥力最小排斥力最小,故,故在空间取最大夹角分布,不同的杂化轨道伸展方向在空间取最大夹角分布,不同的杂化轨道伸展方向不同;不同;(4).杂化

18、轨道只用于形成 键或者用来容纳 未参与成键的孤对电子;(5).原子只有在形成分子时才可能发生杂化,孤立原子不杂化;(6).每个杂化轨道最多也能容纳两个自旋方向相反的电子;(7).对于主族元素来说,含有孤对电子的原子轨道可以参与轨道的杂化,但是没有填充电子的空轨道就不能参与轨道的杂化。sp3杂化轨道的形成过程 x y z x y z z x y z x y z 10928 sp3杂化杂化:1个个s 轨道与轨道与3个个p 轨道进行的杂化轨道进行的杂化,形成形成4个个sp3 杂化轨道。杂化轨道。 每个每个sp3杂化轨道的形状也为一头大,一头小,杂化轨道的形状也为一头大,一头小, 含有含有 1/4 s

19、 轨道和轨道和 3/4 p 轨道的成分轨道的成分 每两个轨道间的夹角为每两个轨道间的夹角为10928 , 空间构型为空间构型为正四面体型正四面体型例如:例如: Sp3 杂化杂化 CH4分子的形成分子的形成sp3C:2s22p2sp2杂化轨道的形成过程 x y z x y z z x y z x y z 120 每个每个sp2杂化轨道的形状也为一头大,一头小,杂化轨道的形状也为一头大,一头小, 含有含有 1/3 s 轨道和轨道和 2/3 p 轨道的成分轨道的成分 每两个轨道间的夹角为每两个轨道间的夹角为120,呈呈平面三角形平面三角形 sp2杂化杂化:1个个s 轨道与轨道与2个个p 轨道进行的杂

20、化轨道进行的杂化, 形成形成3个个sp2 杂化轨道。杂化轨道。120FFFB例如:例如: Sp2 杂化杂化 BF3分子的形成分子的形成B B: 1s1s2 22s2s2 22p2p1 1没有没有3 3个成单电子个成单电子sp2sp2杂化sp杂化轨道的形成过程 x y z x y z z x y z x y z 180每个每个sp杂化轨道的形状为一头大,一头小,杂化轨道的形状为一头大,一头小,含有含有1/2 s 轨道和轨道和1/2 p 轨道的成分轨道的成分两个轨道间的夹角为两个轨道间的夹角为180,呈,呈直线型直线型 sp 杂化杂化:1个个s 轨道与轨道与1个个p 轨道进行的杂化轨道进行的杂化,

21、 形成形成2个个sp杂化轨道。杂化轨道。180ClClBe例如:例如: Sp 杂化杂化 BeCl2分子的形成分子的形成Be原子:原子:1s22s2 没有单个电子,没有单个电子,spsp杂化杂化ClClsppxpx三、杂化理论简介三、杂化理论简介3.3.杂化轨道分类:杂化轨道分类:sp3CH4原子原子轨道杂化轨道杂化等性杂化:参与杂化的各原子轨道进行成分的均匀混合等性杂化:参与杂化的各原子轨道进行成分的均匀混合。 杂化轨道杂化轨道 每个轨道的成分每个轨道的成分 轨道间夹角轨道间夹角( 键角键角) sp 1/2 s,1/2 p 180 sp2 1/3 s,2/3 p 120 sp3 1/4 s,3

22、/4p 109283.3.杂化轨道分类:杂化轨道分类:三、杂化理论简介三、杂化理论简介H2O原子原子轨道杂化轨道杂化 O原子:原子:2s22p4 有有2个个单电子,可形成单电子,可形成2个共价键,个共价键,键角应当是键角应当是90,Why? 2s2p2 对孤对电子对孤对电子杂化杂化不等性杂化:参与杂化的各原子轨道进行成分上的不等性杂化:参与杂化的各原子轨道进行成分上的 不均匀混合。某个杂化轨道有孤电子对不均匀混合。某个杂化轨道有孤电子对排斥力排斥力:孤电子对:孤电子对- -孤电子对孤电子对 孤电子对孤电子对- -成键电子对成键电子对 成键电子对成键电子对- -成键电子对成键电子对试用杂化轨道理

23、论分析乙烯和乙炔分子的试用杂化轨道理论分析乙烯和乙炔分子的成键情况成键情况 C C原子在形成乙烯分子时,碳原子的原子在形成乙烯分子时,碳原子的2s2s轨道与轨道与2 2个个2p2p轨道发生杂化,形成轨道发生杂化,形成3 3个个spsp2 2杂化轨道,伸向平面正杂化轨道,伸向平面正三角形的三个顶点。每个三角形的三个顶点。每个C C原子的原子的2 2个个spsp2 2杂化轨道分杂化轨道分别与别与2 2个个H H原子的原子的1s1s轨道形成轨道形成2 2个相同的个相同的键,各自剩键,各自剩余的余的1 1个个spsp2 2杂化轨道相互形成一个杂化轨道相互形成一个键,各自没有杂键,各自没有杂化的化的l

24、l个个2p2p轨道则垂直于杂化轨道所在的平面,彼此轨道则垂直于杂化轨道所在的平面,彼此肩并肩重叠形成肩并肩重叠形成键。所以,在乙烯分子中双键由一键。所以,在乙烯分子中双键由一个个键和一个键和一个键构成。键构成。 C C原子在形成乙炔分子时发生原子在形成乙炔分子时发生spsp杂化,两个杂化,两个碳原子以碳原子以spsp杂化轨道与氢原子的杂化轨道与氢原子的1s1s轨道结合形成轨道结合形成键。各自剩余的键。各自剩余的1 1个个spsp杂化轨道相互形成杂化轨道相互形成1 1个个键,两个碳原子的未杂化键,两个碳原子的未杂化2p2p轨道分别在轨道分别在Y Y轴和轴和Z Z轴轴方向重叠形成方向重叠形成键。所

25、以乙炔分子中碳原子间以键。所以乙炔分子中碳原子间以叁键相结合。叁键相结合。大 键 C6H6 spsp2 2杂化杂化三、杂化理论简介三、杂化理论简介4.4.杂化类型判断:杂化类型判断: 因为杂化轨道只能用于形成因为杂化轨道只能用于形成键或用来容键或用来容纳孤电子对,故有纳孤电子对,故有 杂化化类型的判断方法:先确定分子或离子的型的判断方法:先确定分子或离子的VSEPR模型,然后就可以比模型,然后就可以比较方便地确定中心方便地确定中心原子的原子的杂化化轨道道类型。型。=中心原子孤对电子对数中心原子结合的原子数中心原子孤对电子对数中心原子结合的原子数杂化轨道数杂化轨道数=中心原子价层电子对数中心原子

26、价层电子对数三、杂化理论简介三、杂化理论简介4.4.杂化类型判断:杂化类型判断:A的价的价电子子对数数234A的的杂化化轨道数道数杂化化类型型A的价的价电子空子空间构型构型A的的杂化化轨道空道空间构型构型ABmABm型分子或离子空型分子或离子空间构型间构型对于对于ABmABm型分子或离子,其中心原子型分子或离子,其中心原子A A的杂化轨道的杂化轨道数恰好与数恰好与A A的价电子对数相等。的价电子对数相等。234spsp2sp3直直线型型平面三角形平面三角形四面体四面体直直线型型平面三角形平面三角形四面体四面体直直线型型平面三角平面三角形或形或V形形四面体三角四面体三角锥形或形或V形形例例1:计

27、算下列分子或离子中的价电子对数,并根据已学填写下表:计算下列分子或离子中的价电子对数,并根据已学填写下表物物质价价电子子对数数中心原中心原子子杂化化轨道道类型型杂化化轨道道/电子子对空空间构型构型轨道道夹角角分子空分子空间构型构型键角角气气态BeCl2CO2BF3CH4NH4+H2ONH3PCl322344444spspspspspsp2 2spsp3 3直线形直线形直线形直线形平面三角形平面三角形四四面面体体18018012010928直线形直线形直线形直线形平面三平面三角形角形正四正四面体面体V形形三角三角锥形锥形1801801201092810928,104.5107.3107.3课堂练

28、习课堂练习例题二:对例题二:对SO2与与CO2说法正确的是说法正确的是( ) A都是直线形结构都是直线形结构 B中心原子都采取中心原子都采取sp杂化轨道杂化轨道 C S原子和原子和C原子上都没有孤对电子原子上都没有孤对电子 D SO2为为V形结构,形结构, CO2为直线形结构为直线形结构D新课标人教版选修新课标人教版选修3 物质结构与性质物质结构与性质第二章第二章 分子结构与性质分子结构与性质第二节第二节 分子的立体结构分子的立体结构(第三课时)第三课时)为何氨分子能与氢离子反应? 氨分子中有孤对电子氨分子中有孤对电子,而氢离子有而氢离子有1S空轨道空轨道,当二者当二者接近时接近时,氨的孤对电

29、子将与氢离子氨的孤对电子将与氢离子1S轨道重叠轨道重叠,形成化学键。形成化学键。四、配合物理论简介四、配合物理论简介1. 1. 配位键配位键(1 1)概念:成键的两个原子一方提供孤对)概念:成键的两个原子一方提供孤对电子,一方提供空轨道而形成的电子,一方提供空轨道而形成的共价键共价键(2 2)形成条件:一方提供孤对电子,一方)形成条件:一方提供孤对电子,一方提供空轨道提供空轨道注意:注意:配位键是一种特殊的共价键配位键是一种特殊的共价键配位键同样具有饱和性和方向性配位键同样具有饱和性和方向性HH3 3O O+ +、NHNH4 4+ +中含有配位键中含有配位键(3 3)配位键的表示方法)配位键的

30、表示方法A AB BHOHHCu Cu H H2 2O OH H2 2O OH H2 2O OOHOH2 22+请你写出请你写出NHNH4 4的配位键的表示法?的配位键的表示法?【探究实验探究实验】向盛有向盛有AgNO3溶液的试管里逐滴的加入氨水。溶液的试管里逐滴的加入氨水。向盛有向盛有CuSO4溶液的试管里逐滴的加入氨水溶液的试管里逐滴的加入氨水根据实验分析出现现象的原因根据实验分析出现现象的原因Cu 2+ +2NH3 .H2O Cu(OH)2 +2 NH4 + Cu(OH)2 + 4NH3 . H2O Cu(NH3) 42+ +2OH+4H2O蓝色沉淀蓝色沉淀深蓝色溶液深蓝色溶液试写出实验

31、中发生的两个反应的离子方程式?试写出实验中发生的两个反应的离子方程式?2+CuNH3H3NNH3NH3实验已知氢氧化铜与足量氨水反应实验已知氢氧化铜与足量氨水反应后溶解是因为生成了后溶解是因为生成了Cu(NH3) 42+ ,其其结构简式为:结构简式为:四、配合物四、配合物2. 2. 配位化合物(配合物)配位化合物(配合物)(1 1)概念:由提供孤对电子对的配体与接受孤对)概念:由提供孤对电子对的配体与接受孤对电子对的中心原子以配位键结合形成的化合物。电子对的中心原子以配位键结合形成的化合物。 或把金属离子(或原子)与某些分子或离子或把金属离子(或原子)与某些分子或离子(称为配体)以配位键结合形

32、成的化合物。(称为配体)以配位键结合形成的化合物。 配合物种类已超过数百万;配合物种类已超过数百万; 配位键的强度有大有小,因而有的配合物配位键的强度有大有小,因而有的配合物很稳定,有的不稳定;很稳定,有的不稳定; 许多过渡元素金属离子对多种配体具有很许多过渡元素金属离子对多种配体具有很强的结合力,因而过渡金属配合物远比主族金强的结合力,因而过渡金属配合物远比主族金属的配合物多属的配合物多相关说明:相关说明:中心原子:也称配位体的形成体,一般是带中心原子:也称配位体的形成体,一般是带正电荷的阳离子,主要是过渡金属的阳离子,正电荷的阳离子,主要是过渡金属的阳离子,但也有中性原子。如:但也有中性原

33、子。如:Ni(CO)Ni(CO)5 5、Fe(CO)Fe(CO)5 5中的中的NiNi和和FeFe都是中性原子都是中性原子配位配位体:体:配配位体可以是阴离子,如位体可以是阴离子,如X X- -、OHOH- -、SCNSCN- -、CNCN- -、 C C2 2O O4 42-2-、POPO4 43-3-等;等;也也可以是中性分子,如可以是中性分子,如H H2 2O O、NHNH3 3、COCO、醇、胺、醇、胺、醚醚等。等。配配位体中直接同中心原子配合的原子叫做配位原位体中直接同中心原子配合的原子叫做配位原子。子。配配位原子是必须含有孤对电子的原位原子是必须含有孤对电子的原子,子,如如NHNH

34、3 3中的中的N N原子,原子,H H2 2O O分子中的分子中的O O原子,配位原子原子,配位原子常是常是VAVA、VIAVIA、VIIAVIIA主族元素的原子。主族元素的原子。配位数:直接同中心原子(或离子)配位配位数:直接同中心原子(或离子)配位的原子(离子或分子)总的数的原子(离子或分子)总的数目。目。 一一般中心原子(或离子)的配位数为般中心原子(或离子)的配位数为2、4、6、8。 在在计算中心离子计算中心离子的配位数的配位数时,一般是时,一般是先配先配离子中找出中心离子和配位体,接着离子中找出中心离子和配位体,接着找出配位原子数找出配位原子数目。目。如如: Co(NH3)4Cl2C

35、l配位数是配位数是6。在晶体、气态或溶液中配离子的存在状态不变在晶体、气态或溶液中配离子的存在状态不变化,配位化合物内界和外界为离子键完全电离。化,配位化合物内界和外界为离子键完全电离。配合物也有异构现象。如配合物也有异构现象。如PtPt(NHNH3 3)2 2ClCl2 2分子有分子有二种结构二种结构配离子在改变条件时可能被破坏。配离子在改变条件时可能被破坏。(加强热、(加强热、形成溶解度很小的沉淀、加入氧化剂和还原剂、形成溶解度很小的沉淀、加入氧化剂和还原剂、加入酸或碱)加入酸或碱)5. 5. 配合物的性质配合物的性质有有Fe2+ Cu2+ Zn2+ Ag+ H2O NH3Cl CO可以作

36、可以作为中心离子的是中心离子的是可以作可以作为配体的是配体的是Fe2+Cu2+Zn2+ H2O NH3CN COAg+CN Cl CH4CO2微粒微粒常见的配位体常见的配位体常见的中心离子常见的中心离子过渡金属原子或离子过渡金属原子或离子X-CO CN H2O NH3SCN-配位数配位数通常是中心离子化合价的二倍通常是中心离子化合价的二倍课堂反馈课堂反馈 例题例题1:下列不属于配合物的是:下列不属于配合物的是A.Cu(H2O)4SO4H2O B.Ag(NH3)2OHC.Na2CO310H2O D.NaAl(OH)4E.NH4Cl F. CuSO45H2O(C、E)例题例题2:下列现象与形成配合物无关的是下列现象与形成配合物无关的是A. A. 向向FeClFeCl3 3溶液中滴加溶液中滴加KSCNKSCN,出现血红色,出现血红色B. B. 向向CuCu与与ClCl2 2反应后的集气瓶中加入少量反应后的集气瓶中加入少量H H2O O,呈绿色,再加水,呈蓝色呈绿色,再加水,呈蓝色C. CuC. Cu与浓与浓HNOHNO3 3反应后,溶液呈绿色;与稀反应后,溶液呈绿色;与稀HNOHNO3 3反应后,溶液呈蓝色反应后,溶液呈蓝色D. D. 向向AlClCl3 3中逐滴加入中逐滴加入NaOH到过量,先出现白到过量,先出现白色沉淀,继而消失色沉淀,继而消失(C)

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号