生物化学英文版课件:chapter 19 Oxidative Phosphorylation

上传人:鲁** 文档编号:569995174 上传时间:2024-08-01 格式:PPT 页数:74 大小:13.73MB
返回 下载 相关 举报
生物化学英文版课件:chapter 19 Oxidative Phosphorylation_第1页
第1页 / 共74页
生物化学英文版课件:chapter 19 Oxidative Phosphorylation_第2页
第2页 / 共74页
生物化学英文版课件:chapter 19 Oxidative Phosphorylation_第3页
第3页 / 共74页
生物化学英文版课件:chapter 19 Oxidative Phosphorylation_第4页
第4页 / 共74页
生物化学英文版课件:chapter 19 Oxidative Phosphorylation_第5页
第5页 / 共74页
点击查看更多>>
资源描述

《生物化学英文版课件:chapter 19 Oxidative Phosphorylation》由会员分享,可在线阅读,更多相关《生物化学英文版课件:chapter 19 Oxidative Phosphorylation(74页珍藏版)》请在金锄头文库上搜索。

1、Chapter 19 Oxidative PhosphorylationOxidation of NADH and FADH2 by O2, with energy released coupled to ATP synthesis. “Anyone who is not confused about oxidative phosphorylation just doesnt understand the situation” Efraim Racker, 1970sThemostefficientenergytransformationprocessfoundontheearth!“Thef

2、ormationanduseofATPistheprinciplenetchemicalreactionoccurringinthewholeworld!”PaulBoyerOxidative phosphorylation is the final stage of nutrient oxidationA1.14-voltpotentialdifference(E0)betweenNADHandO2driveselectronflowthroughtherespiratorychainwithaGoof220kJ/Mol.Therespiratorychain:thebattery(exer

3、gonic)Electricmotor(endergonic)1.Redoxreactions(electrontransferring)carriedoutbyaseriesofproteincomplexeswithincellmembranes;2.Protontransportacrosscellmembrane;3.ATPsynthesisusingtheenergystoredintheprotongradient.Photophosphorylationinchloroplastishighlycomparabletooxidativephosphorylationinmitoc

4、hondria!e-e-Battery(exergonic)Electricmotor(endergonic)Historical events in unveiling molecular mechanism of oxidative phosphorylation (1)Vital role of Pi and coferment in yeast fermentation (Arthur Harden, 1906)Central role of ATP in energy transformation (Fritz Lipmann, 1941)Link between sugar oxi

5、dation and ATP generation (Herman Kalckar, 1940s)Coenzyme NADH linked metabolic pathways to mitochondrial synthesis of ATP (Lehninger, 1949)HardenLipmannKalckarHistorical events in unveiling molecular mechanism of oxidative phosphorylation (2)Electrochemical concentration gradient of protons across

6、a membrane proposed to be harnessed to make ATP (chemi-osmotic theory, Peter Mitchell, 1961)Electron transport protein complexes and ATP synthase isolated (David Green and Efraim Racker, 1960s)Historical events in unveiling molecular mechanism of oxidative phosphorylation (3)Binding change mechanism

7、 (1973) and rotational catalysis (1982) proposed for ATP synthase (Boyer)Structure of ATP synthase partially determined (1994, Walker)Rotation of the ATP synthase molecule observed in vitro (Masasuki Yoshida, 1997).YoshidaThe mitochondrial electron-transfer chain was separated into four major protei

8、n complexesElectrons of NADH and FADH2 are transferred to O2 via many intermediate electron carriers making up the respiratory chain.NADHdehydrogenase(complexI):34-46subunits,1000kDNature,2010,466:441-447.Science, 2006, 311:1430-1436InvolvingFMNandaseriesofiron-sulfurcentersaselectroncarriers,withub

9、iquinonetakingawaytheelectronsattheiron-sulfurproteinN-2.Hydrophilic domainFe-SAtleasteightdifferenttypesofiron-sulfurcenters(firstrevealedbyHelmutBeinert)actintherespiratorychain(incomplexI,IIandIII):ironatomscyclebetweenFe2+(reduced)andFe3+(oxidized).2Fe-2S4Fe-4SInorganicsulfurUbiquinone(orcoenzym

10、eQ10)istheonlye-carrierthatisnotboundtoaproteinandisabletodiffusefreelyinthelipidbilayer.(or dihydroubiquinone)Isoprenoid tailCompletereductionofQrequirestwoelectronsandtwoprotons,occurringintwostepsviaasemiquinoneradicalIntermediate. FredrickCrane,1957FADH2ofotherflavoproteinsalsotransfertheirelect

11、ronstoubiquinone(Q)viaaFe-S,butwithnoH+pumped.SuccinatedehydrogenaseSuccinate dehydrogenase (complex II) transfers electrons from succinate to ubiquinoneComplexII(ofthecitricacidcycle)InvolvingFADandmultipleFe-Scentersaselectroncarrier.ThehemegroupisbelievedtohelpdecreaseproductionofROS.Cytochromebc

12、1complex(ComplexIII)transferselectronsfromQH2tocytochromec(Cytc)CytcCoenzymeQ:cytochromec oxidoreductase(Encodedbymitochondrialgenome)(JohnRieske,1964)Cytochromeswerediscoveredasheme-containingrespiratorypigments(MacMunn,1884,DavidKeilin,1925)KeilinThreetypesofhemegroupsserveasprostheticgroupsofthec

13、ytochromeproteinsExistinComplexIIIExistincytochromecandcomplexIVTheironinterconvertsbetweenitsreduced(Fe2+)andoxidized(Fe3+)formsincytochromes.CytochromereductioncanbedetectedbylightabsorptionatuniquevisiblewavelengthsThereduced(Fe2+)stateofcytochromesa,b,and chasuniquelightabsorptionnear600,560,and

14、550nmrespectively.Thisallowscytochromes(hemoproteins)actiontobedetecteddirectlyinmitochondriaviaspectroscopy.c c b ba aCytochromesareclassifiedonthebasisofpositionoftheirlowestenergyabsorptionbandinthereducedstate.e-transferring&H+pumpinginComplexIIIproposedtooccurviatheQcycletheQcycleFrom:http:/en.

15、wikipedia.org/wiki/Image:Theqcycle.gifCytochromec oxidase(ComplexIV)transferselectronsfromCytctoO2.Hemeaandhemea3 hasidenticalstructuresbutdifferentreductionpotential.4Fe2+-cytochromec+8H+in+O24Fe3+-cytochromec+2H2O+4H+outCyanide,sulfide,azide,andCOallinhibitcytochromecoxidase!Complexes III and IV m

16、ight form supercomplexes (respirasome) on the membraneElectrons flow from NADH (or succinate) to O2 is coupled to transmembrane proton pumping10protonsperNADHand6protonsperFADH2oxidizedarepumpedacrosstheinnermembraneandtheelectronmotiveforceisconvertedtoanprotonmotiveforce.(Estimatedbytitrationsupon

17、thepresenceofspecificinhibitors)Reactive oxygen species (ROS) might be produced from the respiratory chainThe chemiosmotic model was proposed by Peter Mitchell in 1961 to explain the coupling of electron flow and ATP synthesis (Chemical reactions coupled to osmotic (Chemical reactions coupled to osm

18、otic gradients.)gradients.)Facts not yet explained:Facts not yet explained:?“Hight-energyHight-energy”intermediates elusive to identification;intermediates elusive to identification; ? Phosphorylation closely associated with membrane; Phosphorylation closely associated with membrane; ? Uncoupling ca

19、used by agents of various structures; Uncoupling caused by agents of various structures; ? Swelling and shrinkage phenomena. Swelling and shrinkage phenomena.Mitchell, P. 1961, Nature, 191:144-148.A “paradigm” shift in understanding bioenergetics!Vectorial metabolism vsScalar metabolismThe chemiosmo

20、tic theory of Mitchell:e- flow and ATP synthesis are separate events, coupled via a transmembrane H+ gradient!The chemiosmotic theory unified the apparently disparate energy transduction processes as oxidative phosphorylation, photophosphorylation, active transport across membrane and the motion of

21、bacterial flagella.ATP synthase (EC 3.6.3.14) was first identified by dissociation and reconstitution studies (Efraim Racker, 1960s)Knob-likestructureswereseenwithinside-outvesicleofmitochondria,thylakoidmembraneofchloroplastsandinside-outE. coliplasmamembrane.ThemitochondrialATPaseistheATPsynthase!

22、Mitochondria-catalyzed 18O, 32P exchange data suggests that oxidative phosphorylation is dynamically revesible (Mildred Cohn, 1953)Covalentintermediateswasproposedtobeformed.Latersuchaphosphorylatedproteinwasdetected,butlaterfoundtobesuccincylCoAsynthetase(byPaulBoyer;“We were reaching for a gold bu

23、t got a bronze instead”)TheenergyfromelectrontransportwasproposedtobeneededforreleasingpreformedATPfromATPsynthase, not needed for the formation of ATP (Boyer et al., 1973, PNAS, 70:2837-9. PiHOHexchangeisconsiderablylesssensitivetouncouplersthanthePiATPandATPHOHexchanges.Theuncoupler-insensitivePiH

24、OHexchangeisinhibitedbyoligomycin.Similarexchangewasalsoobservedformyosin.Thisreleasecouldlogicallyinvolveenergy-requiringproteincon-formationalchange.(Not a single word was mentioned about the chemiosmotic hypothesis!)Catalytic cooperativity revealed: removal of ADP stopped ATP HOH exchange and rem

25、oval of ATP stopped Pi HOH exchange (Boyer, 1975)At lower ATP level, more O in Pi is exchanged with HOHSubunit composition of ATP synthase characterized, for the the ATPase (F1) and proton channel (Fo) Stationary unitStationary unit(stator)(stator)F1: Fo: ab2c10-14The rotorThe rotor: :the the c- c-r

26、ing and ring and the the stalk; stalk;the statorthe stator: :the remainder.the remainder.Proton-conductingProton-conductingCatalyticCatalyticA rotational binding change (or flip-flop) mechanism was proposed to explain the catalysis of ATP synthase (Paul Boyer, 1980) 1. The subunitfoundtointeractwith

27、thecatalytic subunits;2.Distributionof18OinPi(with1,2or3Oexchanged)formedfrom18O-ATPsuggestedidenticalbehaviorofallcatalyticsites.3.Mildcross-linkingstoppedcatalysisandcleavageofthecross-linkerrestoredactivityBinding Binding ADP + PADP + Pi iSynthesizing Synthesizing ATPATPReleasing Releasing ATPATP

28、Thebinding-changeMechanismorrotationalcatalysis(PaulBoyer,1980s)Each Each subunit subunitwill take threewill take threedifferent conformationsdifferent conformationsin turn during each in turn during each cycle of action.cycle of action.http:/en.wikipedia.org/wiki/Image:ATPsyn.gifThebinding-changeme

29、chanismofATPsynthase:The binding-change model was elegantly supported by X-ray crystallography analysis of F1-ATPase.Thethreecatalytic subunitsdifferinconformationandthenucleotidebound;Thethreecatalyticsubunitsareindifferentstatesofthecatalyticcycleatanyinstant;Interconversionofthestatemaybeachieved

30、byrotationofthe subunitinthecenter.AMP-PNPAMP-PNPAMP-PNPAMP-PNPADPNature,1994,370:621-628.Rotationofc-ringorc-ring/ subunitdirectlyobservedusingfluorescencemicroscopy(1997)MechanicallydrivenATPsynthesisbyF1-ATPasedemonstrated(2004).ModeloftheactionofE. coliATPsynthase:theprotongradientdrivestherotat

31、ionofthecringusingtwohalf-channelsontheasubunit.Protonation/deprotonation of an Asp is believed to be essential for rotating the c ring and the subunit.10-14 protons needed for every3 ATP synthesized.Asp-COO- Asp-COOHThus4protonsperATPsynthesizedhttp:/www.mrc-dunn.cam.ac.uk/research/atp_synthase/ Th

32、e energy stored in the proton gradient can be used to do other work.Therotarymotionofthebacterialflagellaisenergizeddirectlybytheprotongradientpresentacrossthecytoplasmicmembrane.Theproton-motiveforceisusedforactivetransportthroughtheinnermembraneofthemitochondria.HeatisgeneratedinBrownfatthroughthe

33、actionofthermogenin,anuncouplingprotein:toproduceheattomaintainbodytemperatureforanimalsinhibernation,ofnewlybornandadaptingtothecold(thermogenesis).FattyacidsseemtoactivateandnucleotidesinhibitUCP1UCP1Electrons in NADH generated in cytosol are shuttled onto the respiratory chain. The malate-asparta

34、te shuttle system: Malate translocates electrons produced during glycolysis across inner membrane of mitochondrion for oxidative phosphorylationsemipermeableIrreversibleIrreversibleTheglycerol-3-phosphateshuttlesystemThe pathways leading to ATP synthesis are coordinately regulated.Interlockingregula

35、tionofallthesepathwaysmightberealizedbytherelativelevelsofATP,NADH,ADP,AMP,Pi,andNAD+.ATP/(ADPPi) fluctuates only slightly in most tissues due to a coordinated regulation of all the pathways leading to ATP production.The rate of the respiration assumed to be controlled by the availability of ADP (“a

36、cceptor control”)No ATP consumption, no electron flow!PyruvateoxidationSomerespiratoryproteinsareencodedbythehumanmitochondrialgenomeComplexesI,III,andIVandATPsynthaseareassembledbyusingsubunitsmadeinboththecytosolandmitochondria.How was the molecular mechanism of oxidative phosphoryation revealed?K

37、alckarHM(1974).Originsoftheconceptoxidativephosphorylation.Mol. Cell. Biochem.5(12):55-62.1.Glucosedegradation(fermentation,Glycolysis)2.Biologicaloxidation(O2consumption,citricacidcycle)3.Energysupplyofmusclecontraction4.UnderstandingtheroleofATPastheuniversalenergycurrency5.Subcellularlocationandp

38、roteinisolationandcharacterization.The activation of hydrogen atoms was thought to be the key for biological oxidation (Thunberg and Wieland, 1910s)Thunberg, T. (1917) Skand. Arch. Physiol. 35, 163Wieland, O. (1912) Ber. Dtsch. Chem. Ges. 45, 484499; 26062615The oxidation of a large number of organi

39、c compounds (e.g., succinic acid) can be catalyzed by specific dehydrogenases in the presence of artificial hydrogen acceptors (e.g., methylene blue).The activation of O2 was thought to be the key for biological oxidation by WarburgWarburg, O. (1924) Biochem. Z. 177, 471486.Iron-containing respirato

40、ry enzymes, oxidases activate oxygen.Used inhibitors (e.g., NCN, CO) and spectroscopy to indirectly detect the behavior of O2-transferring ferment of respirationin living cells.Warburg(1883-1970)NobelPrize,1931Cyta?Cytc?600nm560nmHeme-like pigments found to exist widely in animals (1886)MacMunn, C.

41、A. (1886) Researches on myohaematin and the histohaematin, Phil. Trans. Roy. Soc. , 177:267-298. Examined organs and tissues of vertebrates and invertebrates, using microspectroscope. Discovered the presence of the histohaematins and myohaematin (having light absorption in reduced state). Cyta?Cytb?

42、Cytc?Cytochromes (“cellular pigments) rediscoveredKeilin, D. (1925) On cytochrome, a respiratory pigment, common to animals, yeast, and higher plants, Proc. R. Soc. B Biol. Sci. 98:312339. Miscrospectroscope showed 4 absorption bands when reduced, assumed to be made of three types of haeme groups (a

43、, b, c).Its a common intracellular respiratory catalyst, the reduction and oxidation of which can be specifically inhibited.DavidKeilin(1887-1963)An oxidase was demonstrated to be a respiratory catalyst in yeastD. KEILIN (1927) Influence of Carbon Monoxide and Light on Indophenol Oxidase of Yeast Ce

44、lls, Nature 119:670-671. A respiratory chain concept was proposed (1929)Keilin, D. (1929) Cytochrome and respiratory enzymes, Proc. Roy, Soc, B104:206-252.Theactivitiesofindophenoloxidaseishighlycorrelatedtotheoxidationofthecytochromes.Succinate(organicsubstrate)leadstothereductionofthecytochromesef

45、fectively.Cytochromesactascarriersofhydrogenbetweenthedehydrase(i.e.,dehydrogenase)andtheoxidase(i.e.,cytochromecoxidase).Activationofhydrogenatoms(Wieland)ActivationofO2(Warburg)Cytochromes(Keilin)The respiratory chain proposed by Keilin was highly regarded by future scientistsCoupling between phos

46、phorylations and oxidations observed (1939)Lipmann,F. (1939) Coupling between Pyruvic Acid Dehydrogenation and Adenylic Acid Phosphorylation, Nature, 143: 281. NADH oxidation by O2 is linked to phosphorylation (1948)Friedkin & Lehninger (1948) Phosphorylation coupled to electron transport between DP

47、NH2 and O2 J. Biol. Chem. 174, 757-758; 178: 61123. Rat liver particulate; 32P-labeled Pi as tracer. The respiratory chain was separated into four membrane complexes (1948)WAINIO et al. (1948) The preparation of a soluble cytochrome oxidase. J Biol Chem. 173:145-52. Green, D. E. (1966) in Comprehens

48、ive Biochemistry (Florkin, M., and Stotz, E. H., eds) Vol. 14, pp. 309326, Elsevier Science Publishers B.V., Amsterdam.Using deoxycholate and cholate to disperse the membrane and allow its components to be separated by conventional ammonium sulfate fractionation.Catalyzing the reduction of ubiquinon

49、e by NADH (Complex I) or succinate (Complex II), the reduction of ferricytochrome c by ubiquinol (Complex III), and the oxidation of ferrocytochrome c by oxygen (Complex IV).Chemical coupling hypothesis on respiratory chain phosphorylation proposed (1953)Slater, EC (1953) Mechanism of phosphorylatio

50、n in the respiratory chain. Nature. 172:975-8. Respiration is compulsorily linked to phosphorylation.In intact mitochondria, passage of each pair of H atoms over the respiratory chain is coupled with the esterification of 1, 2 or 3 atoms of Pi.UncouplingagentsLipmannsscheme(1946)Slatersscheme(1953)P

51、hotophosphorylation concept proposed (1954)Arnon, D. I., F. R. Whatley, and M. B. Allen. (1954) Photosynthesis by isolated chloroplasts. II. Photosynthetic phosphorylation, the conversion of light into phosphate bond energy. J. Am. Chem. Soc. 76: 6324-6328. A quinone was found to be needed for respi

52、ration (1957)Crane et al. (1957). Isolation of a quinone from beef heart mitochondria. Biochimica et Biophysica Acta 25: 2201. Iron-sulfur proteins are involved in respiration (1960) Beinert, H., and Sands, R. H. (1960) Studies on succinic and DPNH dehydrogenase preparations by paramagnetic resonanc

53、e (EPR) spectroscopy Biochem. Biophys. Res. Commun. 3:4146ATP synthase was purified and charaterized (1960-1973)Pullman et al & Racker E. (1960-1973). Partial Resolution of the Enzymes Catalyzing Oxidative Phosphorylation. I -XXV J. Biol. Chem. 235: 3322; 241:2475; 248:676. A chemi-osmotic mechanism

54、 was proposed to explain the couplingMitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144.Unexplained facts: “high-energy intermediates” yet identified; membrane structure essential; uncoupling agents differ greatly i

55、n structure. acid-bath dark phosphorylation by chloroplasts observed (1966)Jagendorf and Uribe (1966) ATP formation caused by acid-base transition of spinach chloroplasts; PNAS, 55:170177.Without illumination or oxygen;Made first acid, then basic.Reconstituted light-activated proton pump catalyzes A

56、TP formation (1974)Racker and Stoeckenius (1974) Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and ATP formation; J. Biol. Chem. 249:662663.Energy from electron transport was proposed to cause the release of preformed ATP from the catalytic sites (1973)Boyer et al.

57、 (1973) A new concept for energy coupling in oxidative phosphorylation based on a molecular explanation of the oxygen exchange reactions. PNAS, 70:2837. (no citation of the Mitchell paper!)EffectofuncouplerS-13onexchangescatalyzedbymitochondriauncoupler-insensitiveuncoupler-sensitive32PlabelingofATP

58、A protonmotive Q cycle was hypothesized (1975)Peter Mitchell (1975) Protonmotive redox mechanism of the cytochrome b-c1 complex in the respiratory chain: Protonmotive ubiquinone cycle, FEBS Lett., 56:1-6. ATP synthase was proposed to exhibit a radical rotational catalysis (1982)Gresser, et al & Boye

59、r PD (1982). Catalytic site cooperativity of beef heart mitochondrial F1-ATPase. Correlations of initial velocity, bound intermediate, and oxygen exchange measurements with an alternating three-site model J. Biol. Chem. 257: 120308. Eadie-Hofsteeplotofv0vsATPBoundADPduringhydrolysisatlowATPCorrelati

60、onofexperimentaldatawithpredictionsfromanalternatingthree-sitemodel.The three -subunits of F1-ATPase differ in conformation (1994)Abrahams et al & Walker JE (1994) Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 370:621-8 ADPandAMP-PNParepresentinthecrystallization

61、medium;Piisabsent.The -subunitsinteractwiththe -subunitsinahighlyasymmetricmanner.The 3 3 was observed to rotate in vitro (1997)Noji et al. and Kinosita K Jr. (1997) Direct observation of the rotation of F1-ATPase. Nature. 386:299-302.Attached a fluorescent actin filament to the -subunit to observe

62、motion directly. In presence of ATP, the filament rotated for more than 100 revolutions. SummaryElectronscollectedinNADHandFADH2arereleased(atdifferententeringpoints)andtransportedtoO2viatherespiratorychain,whichconsistsoffourmultiproteincomplexes(I,II,III,andIV)andtwomobileelectroncarriers(ubiquino

63、neandcytochromec).Aprotongradientacrosstheinnermembraneofmitochondriaisgeneratedusingtheelectronmotiveforcegeneratedbyelectrontransferringthroughtherespiratorychain.ThechemiosmotictheoryexplainsthecouplingofelectronflowandATPsynthesis.ATPsynthasecomprisesaprotonchannel(Fo)andaATPase(F1).Thebinding-changemodelwasproposedtoexplaintheactionmechanismofATPsynthase.Theenergystoredintheprotongradientcanbeusedtodootherwork.ElectronsinNADHgeneratedincytosolisshuttledintomitochondriatoentertherespiratorychain.ThepathwaysleadingtoATPsynthesisiscoordinatelyregulated.Summary

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号