最新复变函数史上最全上

上传人:pu****.1 文档编号:567643484 上传时间:2024-07-21 格式:PPT 页数:288 大小:4.18MB
返回 下载 相关 举报
最新复变函数史上最全上_第1页
第1页 / 共288页
最新复变函数史上最全上_第2页
第2页 / 共288页
最新复变函数史上最全上_第3页
第3页 / 共288页
最新复变函数史上最全上_第4页
第4页 / 共288页
最新复变函数史上最全上_第5页
第5页 / 共288页
点击查看更多>>
资源描述

《最新复变函数史上最全上》由会员分享,可在线阅读,更多相关《最新复变函数史上最全上(288页珍藏版)》请在金锄头文库上搜索。

1、复变函数与积分变换(复变函数与积分变换(复变函数与积分变换(复变函数与积分变换(B B)复变函数复变函数复变函数复变函数( (四版四版四版四版) ) 清华大学清华大学清华大学清华大学2013-2014学年第一学期学年第一学期教材教材1最新【复变函数】 史上最全 上2013年9月3日第一章 复数与复变函数2最新【复变函数】 史上最全 上对对 象象复变函数(自变量为复数的函数)复变函数(自变量为复数的函数)主要任务主要任务研究复变数之间的相互依赖关系,研究复变数之间的相互依赖关系,具体地就是复数域上的微积分具体地就是复数域上的微积分主要内容主要内容复变函数的积分、级数、留数、复变函数的积分、级数、

2、留数、共形映射、傅立叶变换和拉普共形映射、傅立叶变换和拉普拉斯变换等拉斯变换等复数与复变函数、解析函数、复数与复变函数、解析函数、3最新【复变函数】 史上最全 上学习方法复变函数中许多概念、理论、和复变函数中许多概念、理论、和方法是实变函数在复数域内的推方法是实变函数在复数域内的推广和发展,它们之间有许多相似广和发展,它们之间有许多相似之处之处. 但又有不同之处,在学习但又有不同之处,在学习中要善于比较、区别、特别要注中要善于比较、区别、特别要注意复数域上特有的性质与结果意复数域上特有的性质与结果4最新【复变函数】 史上最全 上背景背景十六世纪十六世纪, ,在解代数方程时引进在解代数方程时引进

3、复数复数为使负数开方有意义,需要扩大数系,使实数域扩为使负数开方有意义,需要扩大数系,使实数域扩大到复数域大到复数域在十八世纪以前,对复数的概念及性质了解得不清在十八世纪以前,对复数的概念及性质了解得不清楚,用它们进行计算又得到一些矛盾楚,用它们进行计算又得到一些矛盾. .在历史上长时在历史上长时期人们把复数看作不能接受的期人们把复数看作不能接受的“虚数虚数”直到十八世纪,直到十八世纪,J.DJ.DAlembert(1717-1783)Alembert(1717-1783)与与L.Euler(1707-1783)L.Euler(1707-1783)等人逐步阐明了复数的几何意等人逐步阐明了复数的

4、几何意义和物理意义,澄清了复数的概念义和物理意义,澄清了复数的概念应用复数和复变函数研究了流体力学等方面的一些应用复数和复变函数研究了流体力学等方面的一些问题问题. .复数被广泛承认接受,复变函数论顺利建立和复数被广泛承认接受,复变函数论顺利建立和发展发展. .5最新【复变函数】 史上最全 上十九世纪奠定十九世纪奠定复变函数的理论基础复变函数的理论基础三位代表人物三位代表人物: A.L.Cauchy A.L.Cauchy (1789-1866)1789-1866)K.Weierstrass(1815-1897)K.Weierstrass(1815-1897)分别应用积分和级数研分别应用积分和级

5、数研究复变函数究复变函数G.F.B.Riemann (1826-1866)G.F.B.Riemann (1826-1866)研究复变函数的映照性研究复变函数的映照性质质通过他们的努力,复变函数形成了非常系统的理论,通过他们的努力,复变函数形成了非常系统的理论,且渗透到了数学的许多分支,同时,它在热力学,流且渗透到了数学的许多分支,同时,它在热力学,流体力学和电学等方面也得到了很多的应用体力学和电学等方面也得到了很多的应用. .6最新【复变函数】 史上最全 上& 1. 1. 复数的概念复数的概念复数的概念复数的概念& 2. 2. 代数运算代数运算代数运算代数运算& 3. 3. 共轭共轭共轭共轭复

6、数复数复数复数11复数及其代数运算复数及其代数运算7最新【复变函数】 史上最全 上A 一般一般, , 任意两个复数不能比较大小任意两个复数不能比较大小. .1. 复数的概念复数的概念 定义定义 对任意两实数对任意两实数x、y ,称称 z=x+iy或或z=x+yi为为复数复数.复数复数z 的实部的实部 Re(z) = x ; 虚部虚部 Im(z) = y . (real part) (imaginary part) 复数的模复数的模 判断复数相等判断复数相等8最新【复变函数】 史上最全 上定义定义 z1=x1+iy1与与z2=x2+iy2的和、差、积和商为:的和、差、积和商为: z1z2=(x1

7、x2)+i(y1y2) z1z2=(x1+iy1)(x2+iy2)=(x1x2-y1y2)+i(x2y1+x1y2)2. 代数运算代数运算四则运算四则运算四则运算四则运算9最新【复变函数】 史上最全 上z1+z2=z2+z1;z1z2=z2z1;(z1+z2)+z3=z1+(z2+z3);z1(z2z3)=(z1z2)z3;z1(z2+z3)=z1z2+z1z3 .运算规律运算规律复数的运算满足交换律、结合律、分配律复数的运算满足交换律、结合律、分配律.(与实数相同与实数相同)即,)即,10最新【复变函数】 史上最全 上共轭复数的性质共轭复数的性质3.共轭复数共轭复数定义定义 若若z=x+iy

8、 , 称称 z=x-iy 为为z 的共轭复数的共轭复数.(conjugate)11最新【复变函数】 史上最全 上12最新【复变函数】 史上最全 上& 1. 1. 点的表示点的表示点的表示点的表示& 2. 2. 向量表示法向量表示法向量表示法向量表示法& 3. 3. 三角表示法三角表示法三角表示法三角表示法& 4. 4. 指数表示法指数表示法指数表示法指数表示法2 复数的表示方法复数的表示方法13最新【复变函数】 史上最全 上1. 点的表示点的表示点的表示:点的表示:A 数数z z与点与点z z同义同义. .14最新【复变函数】 史上最全 上2. 向量表示法向量表示法A oxy(z)P(x,y)

9、xy 称向量的长度为复数称向量的长度为复数z=x+iy的的模模或或绝对值绝对值;以正实轴以正实轴 为始边为始边, 以以 为终边的角的为终边的角的弧度数弧度数 称为复数称为复数z=x+iy的的辐角辐角.(z0时时)15最新【复变函数】 史上最全 上辐角无穷多:辐角无穷多:Arg z=0+2k, kZ,把其中满足把其中满足 的的0称为辐角称为辐角Argz的主值,的主值,记作记作0=argz.A z=0z=0时,辐角不确定时,辐角不确定. . 计算计算argz(z0) 的公式的公式16最新【复变函数】 史上最全 上A 当当z z落于一落于一, ,四象限时,不变四象限时,不变. . A 当当z z落于

10、第二象限时,加落于第二象限时,加 . . A 当当z z落于第三象限时,减落于第三象限时,减 . . 17最新【复变函数】 史上最全 上18最新【复变函数】 史上最全 上19最新【复变函数】 史上最全 上20最新【复变函数】 史上最全 上oxy(z) z1z2 z1+z2z2- z1由向量表示法知由向量表示法知3. 三角表示法三角表示法4. 指数表示法指数表示法21最新【复变函数】 史上最全 上22最新【复变函数】 史上最全 上引进复数的几何表示,可将平面图形用复数方程引进复数的几何表示,可将平面图形用复数方程(或不等式)表示;反之,也可由给定的复数方(或不等式)表示;反之,也可由给定的复数方

11、程(或不等式)来确定它所表示的平面图形程(或不等式)来确定它所表示的平面图形.例例1 用复数方程表示用复数方程表示:(1)过两点)过两点 zj=xj+iyj (j=1,2)的直线;的直线;(2)中心在点)中心在点(0, -1), 半径为半径为2的圆的圆.oxy(z)Lz1z2z解解 (1) z=z1+t (z2-z1) (-t 0为半径的为半径的圆圆 | z -z 0|(或或 0 | z z 0| 0, 对任意对任意 z D, 均有均有zG=z | |z|R,则,则D是有界是有界区域区域;否则无界;否则无界.闭区域闭区域 区域区域D与它的边界一起构成闭区域与它的边界一起构成闭区域,44最新【复

12、变函数】 史上最全 上45最新【复变函数】 史上最全 上2. 简单曲线(或简单曲线(或Jardan曲线曲线)令令z(t)=x(t)+iy(t) atb ;则曲线方程可记为:则曲线方程可记为:z=z(t), atb有限条光滑曲线相连接构成一条分段光滑曲线有限条光滑曲线相连接构成一条分段光滑曲线.46最新【复变函数】 史上最全 上重点重点 设连续曲线设连续曲线C:z=z(t),atb,对于对于t1(a,b), t2 a, b,当当t1t2时,若时,若z(t1)=z(t2),称称z(t1)为曲线为曲线C的重点的重点. 定义定义 称称没有重点没有重点的连续曲线的连续曲线C为简单曲线或为简单曲线或 Ja

13、rdan曲线曲线;若简单曲线若简单曲线C 满足满足z(a)=z(b)时,则称时,则称此曲线此曲线C是简单是简单闭闭曲线或曲线或Jordan闭闭曲线曲线 . z(a)=z(b)简单闭曲线简单闭曲线z(t1)=z(t2)不是简单闭曲线不是简单闭曲线47最新【复变函数】 史上最全 上3. 单连通域与多连通域单连通域与多连通域简单闭曲线的性质简单闭曲线的性质 任一条简单闭曲线任一条简单闭曲线 C:z=z(t), ta,b,把复,把复平面唯一地分成三个互不相交的部分:一个是有平面唯一地分成三个互不相交的部分:一个是有界区域,称为界区域,称为C的内部;一个是无界区域,称为的内部;一个是无界区域,称为C的外

14、部;还有一个是它们的公共边界的外部;还有一个是它们的公共边界.z(a)=z(b)Cz(a)=z(b)内部内部外部外部边界边界定义定义 复平面上的一个区域复平面上的一个区域 B ,如果如果B内的任何简单闭曲线的内的任何简单闭曲线的内部总在内部总在B内内,就称,就称 B为单连通为单连通域;非单连通域称为多连通域域;非单连通域称为多连通域.48最新【复变函数】 史上最全 上例如例如 |z|0)是单连通的;)是单连通的; 0r|z|R是多连通的是多连通的.单连通域单连通域多连通域多连通域多连通域多连通域单连通域单连通域49最新【复变函数】 史上最全 上作业P31 1()(),()()(),()(),(

15、)()()()()()50最新【复变函数】 史上最全 上51最新【复变函数】 史上最全 上52最新【复变函数】 史上最全 上53最新【复变函数】 史上最全 上54最新【复变函数】 史上最全 上& 1. 复变函数的定义复变函数的定义& 2. 映射的概念映射的概念& 3. 反函数或逆映射反函数或逆映射5 复变函数复变函数最新【复变函数】 史上最全 上1. 复变函数的定义复变函数的定义与实变函数定义相类似与实变函数定义相类似定义定义A 最新【复变函数】 史上最全 上例例1例例2最新【复变函数】 史上最全 上oxy(z)Gouv(w)GG*w=f(z)在几何上,在几何上, w=f(z)可以看作:可以看

16、作: 定义域定义域函数值集合函数值集合 2. 映射的概念映射的概念复变函数的几何意义复变函数的几何意义zw=f(z)w最新【复变函数】 史上最全 上A 以下不再区分函数与映射(变换)以下不再区分函数与映射(变换). .A 在复变函数中用两个复平面上点集之间的在复变函数中用两个复平面上点集之间的 对应关系来表达两对变量对应关系来表达两对变量 u,v 与与 x,y 之间的对应关系,以便在研究和理解复变之间的对应关系,以便在研究和理解复变 函数问题时,可借助于几何直观函数问题时,可借助于几何直观. .复变函数的几何意义是一个映射(变换)复变函数的几何意义是一个映射(变换)最新【复变函数】 史上最全

17、上例例3解解关于实轴对称的一个映射关于实轴对称的一个映射见图见图1-11-2旋转变换旋转变换(映射映射)见图见图2例例4解解最新【复变函数】 史上最全 上oxy(z)x、uy、v(z)、(w)ox、uy、v(z)、(w)o图图1-1图图1-2图图2uv(w)o最新【复变函数】 史上最全 上例例5oxy(z)ouv(w)oxy(z)ouv(w)R=2R=4最新【复变函数】 史上最全 上 3. 反函数或逆映射反函数或逆映射例例 设设 z=w2 则称则称 为为z=w2的反函数或逆映射的反函数或逆映射定义定义 设设 w =f (z) 的定义集合为的定义集合为G,函数值集合为函数值集合为G*则称则称z=

18、(w)为为w=f(z)的反函数(的反函数(逆映射逆映射).最新【复变函数】 史上最全 上例例 已知映射已知映射w= z3 ,求区域,求区域 0argz 在平面在平面w上的象上的象.例例最新【复变函数】 史上最全 上2008.10.8(第三次课)最新【复变函数】 史上最全 上& 1. 函数的极限函数的极限& 2. 运算性质运算性质& 3.函数的连续性函数的连续性6 复变函数的极限与连续性复变函数的极限与连续性最新【复变函数】 史上最全 上1. 函数的极限函数的极限定义定义uv(w)oAxy(z)o几何意义几何意义: 当变点当变点z一旦进一旦进入入z0 的充分小去的充分小去心邻域时心邻域时,它的象

19、它的象点点f(z)就落入就落入A的的一个预先给定的一个预先给定的邻域中邻域中最新【复变函数】 史上最全 上A (1)(1) 意义中意义中 的方式是任意的的方式是任意的. . 与一元实变函数相比较要求更高与一元实变函数相比较要求更高. .(2) A是复数是复数. . 2. 运算性质运算性质复变函数极限与其实部和虚部极限的关系:复变函数极限与其实部和虚部极限的关系:定理定理1(3) 若若f(z)在在 处有极限处有极限,其极限其极限是唯一的是唯一的. .最新【复变函数】 史上最全 上定理定理2A 以上定理用极限定义证以上定理用极限定义证! !最新【复变函数】 史上最全 上例例1例例2例例3最新【复变

20、函数】 史上最全 上3.函数的连续性函数的连续性定义定义定理定理3最新【复变函数】 史上最全 上例例4 证明证明f (z)=argz在原点及负实轴上不连续在原点及负实轴上不连续.证明证明xy(z)ozz最新【复变函数】 史上最全 上 定理定理4 连续函数的和、差、积、商连续函数的和、差、积、商 (分母不为分母不为0) 仍为连续函数仍为连续函数; 连续函数的复合函数仍为连续函数连续函数的复合函数仍为连续函数.有界性:有界性:最新【复变函数】 史上最全 上第二章第二章第二章第二章 解析函数解析函数解析函数解析函数& 第一节第一节第一节第一节 解析函数的概念解析函数的概念解析函数的概念解析函数的概念

21、& 第二节第二节第二节第二节 函数解析的充要条件函数解析的充要条件函数解析的充要条件函数解析的充要条件& 第三节第三节第三节第三节 初等函数初等函数初等函数初等函数最新【复变函数】 史上最全 上& 1. 1. 复变函数的导数定义复变函数的导数定义复变函数的导数定义复变函数的导数定义& 2. 2. 解析函数的概念解析函数的概念解析函数的概念解析函数的概念2.1 解析函数的概念解析函数的概念最新【复变函数】 史上最全 上 一一. 复变函数的导数复变函数的导数(1)导数定义导数定义定义定义 设函数设函数w=f (z) zD, 且且z0、 z0 +zD,如果极限如果极限 存在,则称函数存在,则称函数f

22、 (z)在点在点z0处可导处可导.称此极限值为称此极限值为f (z)在在z0的导数,的导数,记作记作 如果如果w=f(z)在区域在区域D内处处可导,则称内处处可导,则称f (z)在区域在区域D内可导内可导.最新【复变函数】 史上最全 上A (1) (1) z z00是在平面区域上以任意方式趋于零是在平面区域上以任意方式趋于零. .A (2) (2) z=z=x+iy,x+iy,z=z=x+iy, f=f(z+z)-f(z) x+iy, f=f(z+z)-f(z) 例例1最新【复变函数】 史上最全 上(2)求导公式与法则求导公式与法则 常数的导数常数的导数 c =(a+ib) =0. (zn)

23、=nzn-1 (n是自然数是自然数).证明证明 对于复平面上任意一点对于复平面上任意一点z0,有,有-实函数中求导法则的推广实函数中求导法则的推广最新【复变函数】 史上最全 上 设函数设函数f (z), ,g (z) 均可导,则均可导,则 f (z)g (z) =f (z)g (z), f (z)g(z) = f (z)g(z) + f (z)g (z)最新【复变函数】 史上最全 上复合函数的导数复合函数的导数 ( f g(z) =f (w)g (z), 其中其中w=g(z). 反函数的导数反函数的导数 ,其中,其中: w=f (z)与与z= (w)互为单值的反函数,且互为单值的反函数,且(w

24、) 0.最新【复变函数】 史上最全 上例例3 问:函数问:函数f (z)=x+2yi是否可导?是否可导?例例2解解解解最新【复变函数】 史上最全 上例例4 证明证明 f (z)=zRez只在只在z=0处才可导处才可导.证明证明最新【复变函数】 史上最全 上A (1) (1) 复变函数在一点处可导,要比实函数复变函数在一点处可导,要比实函数 在一点处可导要求高得多,也复杂得在一点处可导要求高得多,也复杂得 多,这是因为多,这是因为z z00是在平面区域上是在平面区域上 以任意方式趋于零的原故以任意方式趋于零的原故. . (2) (2) 在高等数学中要举出一个处处连续,在高等数学中要举出一个处处连

25、续, 但处处不可导的例题是很困难的但处处不可导的例题是很困难的, , 但在复变函数中,却轻而易举但在复变函数中,却轻而易举.最新【复变函数】 史上最全 上(3)可导与连续可导与连续若若 w=f (z) 在点在点 z0 处可导处可导 w=f (z) 点点 z0 处连续处连续.?最新【复变函数】 史上最全 上2.4 解析函数解析函数1. 解析函数的概念解析函数的概念定义定义 如果函数如果函数w=f (z)在在z0及及z0的某个邻域内处处的某个邻域内处处 可导,则称可导,则称f (z)在在z0解析;解析; 如果如果f (z)在区域在区域D内每一点都解析,则称内每一点都解析,则称 f (z)在在D内解

26、析,或称内解析,或称f (z)是是D内的解析函数内的解析函数 (全纯函数或正则函数)全纯函数或正则函数).如果如果f (z)在点在点z0不解析,就称不解析,就称z0是是f (z)的的奇点奇点.A (1) w=f (z) 在在 D 内解析内解析 在在D内可导内可导. (2) 函数函数f (z)在在 z0 点可导,未必在点可导,未必在z0解析解析.最新【复变函数】 史上最全 上例如例如(1) w=z2 在整个复平面处处可导,故是整个复平面在整个复平面处处可导,故是整个复平面 上的解析函数;上的解析函数;(2) w=1/z,除去,除去z=0点外,是整个复平面上的解析点外,是整个复平面上的解析 函数;

27、函数;(3) w=zRez 在整个复平面上处处不解析在整个复平面上处处不解析(见例见例4).定理定理1 设设w=f (z)及及w=g(z)是区域是区域D内的解析函数,内的解析函数,则则 f (z)g(z),f (z)g(z) 及及 f (z) g(z) (g (z)0时时)均是均是D内的解析函数内的解析函数.最新【复变函数】 史上最全 上定理定理 2 设设 w=f (h) 在在 h 平面上的区域平面上的区域 G 内解析内解析, h=g(z) 在在 z 平面上的区域平面上的区域 D 内解析内解析, h=g(z)的函数值的函数值集合集合 G,则复合函数,则复合函数w=f g(z)在在D内处处解析内

28、处处解析.最新【复变函数】 史上最全 上调和函数调和函数最新【复变函数】 史上最全 上 在在66我们证明了在我们证明了在D内的解析函数内的解析函数,其导数其导数仍为解析函数仍为解析函数,所以解析函数有任意阶导数所以解析函数有任意阶导数.本节本节利用这一重要结论研究解析函数与调和函数之间利用这一重要结论研究解析函数与调和函数之间的关系的关系.内内 容容 简简 介介7 解析函数与调和函数的关系解析函数与调和函数的关系最新【复变函数】 史上最全 上定义定义定理定理最新【复变函数】 史上最全 上证明:证明:设设f (z)=u(x,y)+i v(x,y)在区域在区域D内解析,则内解析,则最新【复变函数】

29、 史上最全 上即即u及及v 在在D内满足拉普拉斯内满足拉普拉斯(Laplace)方程方程:定义定义最新【复变函数】 史上最全 上上面定理说明:上面定理说明:由解析的概念得:由解析的概念得:现在研究反过来的问题:现在研究反过来的问题:最新【复变函数】 史上最全 上如如最新【复变函数】 史上最全 上定理定理最新【复变函数】 史上最全 上A 公式不用强记!可如下推出:公式不用强记!可如下推出:类似地,类似地, 然后两端积分得,然后两端积分得,最新【复变函数】 史上最全 上A 调和函数在流体力学和电磁场理论等实际调和函数在流体力学和电磁场理论等实际问题中都有重要应用问题中都有重要应用.本节介绍了调和函

30、数与解本节介绍了调和函数与解析函数的关系析函数的关系.最新【复变函数】 史上最全 上例例1解解曲线积分法曲线积分法最新【复变函数】 史上最全 上故故A 最新【复变函数】 史上最全 上又解又解凑凑全全微微分分法法最新【复变函数】 史上最全 上又解又解偏偏积积分分法法最新【复变函数】 史上最全 上又解又解不不定定积积分分法法最新【复变函数】 史上最全 上第八次课11月12日最新【复变函数】 史上最全 上& 1. 解析函数的充要条件解析函数的充要条件& 2. 举例举例2 函数解析的充要条件函数解析的充要条件最新【复变函数】 史上最全 上 如果复变函数如果复变函数 w = f (z) = u(x, y

31、) + iv(x, y)在定义在定义域域 D内处处可导,则函数内处处可导,则函数 w = f (z) 在在 D内解析内解析. 本节从函数本节从函数 u (x , y) 及及 v (x , y) 的可导性,探求的可导性,探求函数函数w=f (z) 的可导性,从而给出判别函数解析的的可导性,从而给出判别函数解析的一个充分必要条件,并给出解析函数的求导方法一个充分必要条件,并给出解析函数的求导方法.问题问题 如何判断函数的解析性呢?如何判断函数的解析性呢?最新【复变函数】 史上最全 上一一. 解析函数的充要条件解析函数的充要条件最新【复变函数】 史上最全 上A 记忆记忆定义定义 方程方程称为称为Ca

32、uchy-Riemann方程方程(简称简称C-R方程方程).最新【复变函数】 史上最全 上2008.10.15第四次课最新【复变函数】 史上最全 上定理定理1 设设 f (z) = u (x, y) + iv(x, y)在在 D 内有定义,内有定义, 则则 f (z)在点在点 z=x+iy D处可导的充要条件是处可导的充要条件是 u(x, y) 和和 v(x, y) 在点在点 (x, y ) 可微,且满足可微,且满足 Cauchy-Riemann方程方程上述条件满足时上述条件满足时,有有最新【复变函数】 史上最全 上证明证明(由由f (z)的可导的可导 C-R方程满足上面已证!只须证方程满足上

33、面已证!只须证 f (z)的可导的可导 函数函数 u(x, y)、v(x, y)可微可微).函数函数 w =f (z)点点 z可导,即可导,即则则 f (z+ z)-f(z)=f (z)z+ (z)z (1), 且且最新【复变函数】 史上最全 上u+iv = (a+ib)(x+iy)+( 1+i 2)(x+iy)=(ax-by+ 1x- - 2y)+i(bx+ay+ 2x+ 1y)令:令:f (z+z) - - f (z)=u+iv,f (z)= a+ib, (z)= 1+i 2 故(故(1)式可写为)式可写为因此因此 u=ax- -by+ 1x- - 2y , v=bx+ay+ 2x+ +

34、1y最新【复变函数】 史上最全 上所以所以u(x, y),v(x, y)在点在点(x, y)处可微处可微. (由函数(由函数u(x,y) ,v (x,y)在点在点(x,y)处可微及满足处可微及满足 C-R方程方程 f (z)在点在点z=x+iy处可导)处可导)u(x,y),v(x,y)在在(x,y)点可微,即:点可微,即:最新【复变函数】 史上最全 上定理定理2 函数函数f (z)=u(x, y)+iv(x, y)在在D内解析充要内解析充要 条件是条件是 u(x, y) 和和 v(x, y)在在D内内可微,且可微,且 满足满足Cauchy-Riemann方程方程A 由此可以看出可导函数的实部与

35、虚部有密切的由此可以看出可导函数的实部与虚部有密切的联系联系. .当一个函数可导时当一个函数可导时, ,仅由其实部或虚部就可以仅由其实部或虚部就可以求出导数来求出导数来. .A 利用该定理可以判断那些函数是不可导的利用该定理可以判断那些函数是不可导的. .最新【复变函数】 史上最全 上使用时使用时: i) 判别判别 u(x, y),v (x, y) 偏导数的连续性,偏导数的连续性, ii) 验证验证C-R条件条件.iii) 求导数求导数:A 前面我们常把复变函数看成是两个实函数拼成的前面我们常把复变函数看成是两个实函数拼成的, , 但是求复变函数的导数时要注意但是求复变函数的导数时要注意, ,

36、 并不是两个实并不是两个实函数分别关于函数分别关于x, ,y求导简单拼凑成的求导简单拼凑成的. .最新【复变函数】 史上最全 上二二. 举例举例例例1 判定下列函数在何处可导,在何处解析:判定下列函数在何处可导,在何处解析:解解 (1) 设设z=x+iy w=x-iy u=x, v= -y 则则最新【复变函数】 史上最全 上解解(2) f (z)=ex(cosy +isiny) 则则 u=excosy, v= exsiny最新【复变函数】 史上最全 上仅在点仅在点z = 0处满足处满足C-R条件,故条件,故解解 (3) 设设z=x+iy w=x2+y2 u= x2+y2 , v=0 则则最新【

37、复变函数】 史上最全 上例例2 求证函数求证函数证明证明 由于在由于在z0处,处,u(x,y)及及v(x,y)都是可微函数,都是可微函数,且满足且满足C-R条件:条件:故函数故函数w=f (z)在在z0处解析,其导数为处解析,其导数为最新【复变函数】 史上最全 上例例3 证明证明最新【复变函数】 史上最全 上例例4 如果如果f (z)=u(x, y)+i v(x, y)是一解析函数,是一解析函数, 且且f (z)0,那么曲线族,那么曲线族u(x, y)=C1, v(x, y)=C2必互相正交,这里必互相正交,这里C1 、 C2常数常数.那么在曲线的交点处,那么在曲线的交点处,i)uy、 vy

38、均不为零时,均不为零时,由隐函数求导法则知曲线族由隐函数求导法则知曲线族 u(x, y)=C1,v(x, y)=C2中任一条曲线的斜率分别为中任一条曲线的斜率分别为 解解利用利用C-R方程方程 ux=vy, uy=-vx 有有k1k2=(-ux/uy)(-vx/vy)= -1,即:两族曲线互相正交,即:两族曲线互相正交.最新【复变函数】 史上最全 上ii) uy,vy中有一为零时,不妨设中有一为零时,不妨设uy=0,则,则k1=, k2=0(由(由C-R方程)方程)即:两族曲线在交点处的切线一条是水平的,另即:两族曲线在交点处的切线一条是水平的,另一条是铅直的一条是铅直的, 它们仍互相正交它们

39、仍互相正交.练习练习: a=2 , b=-1 , c=-1 , d=2最新【复变函数】 史上最全 上& 1. 指数函数指数函数& 2. 三角函数和双曲函数三角函数和双曲函数& 3. 对数函数对数函数& 4. 乘幂与幂函数乘幂与幂函数& 5. 反三角函数与反双曲函数反三角函数与反双曲函数3 初等函数初等函数最新【复变函数】 史上最全 上 本节将实变函数的一些常用的初等函数本节将实变函数的一些常用的初等函数推广到复变函数情形,研究这些初等函数的推广到复变函数情形,研究这些初等函数的性质,并说明它们的解析性性质,并说明它们的解析性.内内 容容 简简 介介最新【复变函数】 史上最全 上一一. 指数函数

40、指数函数它与实变指数函数有类似的性质它与实变指数函数有类似的性质:定义定义最新【复变函数】 史上最全 上A 这个性质是实变指数函数所没有的这个性质是实变指数函数所没有的.最新【复变函数】 史上最全 上A 例例1例例2最新【复变函数】 史上最全 上二二. 三角函数和双曲函数三角函数和双曲函数推广到复变数情形推广到复变数情形定义定义最新【复变函数】 史上最全 上q正弦与余弦函数的性质正弦与余弦函数的性质最新【复变函数】 史上最全 上思考题:最新【复变函数】 史上最全 上由正弦和余弦函数的定义得由正弦和余弦函数的定义得其它三角函数的定义其它三角函数的定义(详见详见P51)最新【复变函数】 史上最全

41、上定义定义称为双曲正弦和双曲余弦函数称为双曲正弦和双曲余弦函数q双曲正弦和双曲余弦函数的性质双曲正弦和双曲余弦函数的性质最新【复变函数】 史上最全 上三三. 对数函数对数函数定义定义 指数函数的反函数称为对数函数指数函数的反函数称为对数函数.即,即,(1) 对数的定义对数的定义最新【复变函数】 史上最全 上故故最新【复变函数】 史上最全 上特别特别A 最新【复变函数】 史上最全 上2008.10.22第五次课最新【复变函数】 史上最全 上(2) 对数函数的性质对数函数的性质见见1-6例例1最新【复变函数】 史上最全 上例例4最新【复变函数】 史上最全 上四四. 乘幂乘幂 与幂函数与幂函数 q

42、乘幂乘幂ab定义定义A 多值多值一般为多值一般为多值最新【复变函数】 史上最全 上q支支最新【复变函数】 史上最全 上 (2)当当b=1/n(n正整数正整数)时时,乘幂乘幂ab与与a 的的 n次根意义一致次根意义一致.A (1)当当b=n(正整数正整数)时时,乘幂乘幂ab与与a 的的n次幂次幂 意义一致意义一致.最新【复变函数】 史上最全 上解解例例5最新【复变函数】 史上最全 上q 幂函数幂函数zb定义定义当当b = n (正整数正整数)w=z n 在整个复平面上是单值解析函数在整个复平面上是单值解析函数最新【复变函数】 史上最全 上 除去除去b为正整数外,多值函数,为正整数外,多值函数,当

43、当b为无理数或复数时,无穷多值为无理数或复数时,无穷多值. 5. 反三角函数与反双曲函数反三角函数与反双曲函数详见详见P52A 重点:重点:指数函数、对数函数指数函数、对数函数、乘幂、乘幂最新【复变函数】 史上最全 上作 业P67 2, 8, 15, 18最新【复变函数】 史上最全 上第三章复变函数的积分复变函数的积分最新【复变函数】 史上最全 上& 1. 有向曲线有向曲线& 2. 积分的定义积分的定义& 3. 积分存在的条件及其计算法积分存在的条件及其计算法& 4. 积分性质积分性质1 复变函数积分的概念复变函数积分的概念最新【复变函数】 史上最全 上1. 有向曲线有向曲线最新【复变函数】

44、史上最全 上CA(起点起点)B(终点终点)CC最新【复变函数】 史上最全 上 2. 积分的定义积分的定义定义定义DBxyo最新【复变函数】 史上最全 上A 最新【复变函数】 史上最全 上3. 积分存在的条件及其计算法积分存在的条件及其计算法定理定理A 最新【复变函数】 史上最全 上证明证明最新【复变函数】 史上最全 上A 最新【复变函数】 史上最全 上由曲线积分的计算法得由曲线积分的计算法得最新【复变函数】 史上最全 上 4. 积分性质积分性质由积分定义得:由积分定义得:最新【复变函数】 史上最全 上例例1解解又解又解Aoxy最新【复变函数】 史上最全 上例例2解解oxyrC最新【复变函数】

45、史上最全 上 = = =- -= =- - = =- -+ + +0002)()(01010nnizzdzzzdzrzznCnp pA 最新【复变函数】 史上最全 上第六次课10月29日最新【复变函数】 史上最全 上oxy例例3解解最新【复变函数】 史上最全 上解解:例例4最新【复变函数】 史上最全 上分析分析1的积分例子的积分例子:2 Cauchy-Goursat基本定理基本定理最新【复变函数】 史上最全 上猜想猜想:积分的值与路径无关或沿闭路的:积分的值与路径无关或沿闭路的积分值积分值0的条件可能与被积函数的解析性及解的条件可能与被积函数的解析性及解析区域的单连通有关析区域的单连通有关.先

46、将条件加强些,作初步的探讨先将条件加强些,作初步的探讨最新【复变函数】 史上最全 上Cauchy 定理定理最新【复变函数】 史上最全 上Cauchy-Goursat基本定理:基本定理:A BC也称也称Cauchy定理定理最新【复变函数】 史上最全 上(3)定理中曲线定理中曲线C不必是简单的!如下图不必是简单的!如下图.BBC推论推论 设设f (z)在单连通区域在单连通区域B内解析,则对任意内解析,则对任意两点两点z0, z1B, 积分积分c f (z)dz不依赖于连接起点不依赖于连接起点z0与终点与终点z1的曲线,的曲线,即积分与路径无关即积分与路径无关.Cz1z0C1C2C1C2z0z1最新

47、【复变函数】 史上最全 上复合闭路定理:复合闭路定理:3 基本定理推广基本定理推广复合闭路定理复合闭路定理最新【复变函数】 史上最全 上证明证明DCc1c2BL1L2L3AAEEFFGH最新【复变函数】 史上最全 上说明说明最新【复变函数】 史上最全 上A 此式说明一个解析函此式说明一个解析函数沿闭曲线的积分,数沿闭曲线的积分,不因闭曲线在区域内不因闭曲线在区域内作连续变形而改变它作连续变形而改变它的积分值,只要在变的积分值,只要在变形过程中曲线不经过形过程中曲线不经过f(z)的不解析点的不解析点.闭路变形原理闭路变形原理D CC1C1C1最新【复变函数】 史上最全 上例例解解C1C21xyo

48、最新【复变函数】 史上最全 上练习练习解解C1C21xyo最新【复变函数】 史上最全 上作业P99 1,2,5,7(1)(2) 最新【复变函数】 史上最全 上& 1. 原函数与不定积分的概念原函数与不定积分的概念& 2. 积分计算公式积分计算公式4 原函数与不定积分原函数与不定积分最新【复变函数】 史上最全 上 1. 原函数与不定积分的概念原函数与不定积分的概念 由由2基本定理的推论知:设基本定理的推论知:设f (z)在单连通区在单连通区域域B内解析,则对内解析,则对B中任意曲线中任意曲线C, 积分积分c fdz与路与路径无关,只与起点和终点有关径无关,只与起点和终点有关. 当起点固定在当起点

49、固定在z0, 终点终点z在在B内变动内变动,c f (z)dz在在B内就定义了一个变上限的单值函数,记作内就定义了一个变上限的单值函数,记作定理定理 设设f (z)在单连通区域在单连通区域B内解析,则内解析,则F(z)在在B内解析,且内解析,且最新【复变函数】 史上最全 上定义定义 若函数若函数 (z) 在区域在区域B内的导数等于内的导数等于f (z) ,即,即 ,称称 (z)为为f (z)在在B内的原函数内的原函数. 上面定理表明上面定理表明 是是f (z)的一个的一个原函数原函数.设设H (z)与与G(z)是是f (z)的任何两个原函数,的任何两个原函数,这表明:这表明:f (z)的任何两

50、个原函数相差一个常数的任何两个原函数相差一个常数.( (见第二章见第二章22例例3)3)最新【复变函数】 史上最全 上2. 积分计算公式积分计算公式定义定义 设设F(z)是是f (z)的一个原函数,称的一个原函数,称F(z)+c(c为为任意常数任意常数)为为f (z)的不定积分,记作的不定积分,记作定理定理 设设f (z)在单连通区域在单连通区域B内解析,内解析, F(z)是是f (z)的一个原函数,则的一个原函数,则A 此公式类似于微积分学中的牛顿莱布尼兹公式此公式类似于微积分学中的牛顿莱布尼兹公式.A 但是要求函数是但是要求函数是解析解析的的,比以前的比以前的连续连续条件要强条件要强最新【

51、复变函数】 史上最全 上例例1 计算下列积分:计算下列积分:解解1) 最新【复变函数】 史上最全 上解解)最新【复变函数】 史上最全 上例例3 计算下列积分:计算下列积分:最新【复变函数】 史上最全 上小结小结 求积分的方法求积分的方法最新【复变函数】 史上最全 上第七次课11月5日最新【复变函数】 史上最全 上利用利用Cauchy-Goursat基本定理在多连通域上的推基本定理在多连通域上的推广广,即复合闭路定理即复合闭路定理,导出一个用边界值表示解析函导出一个用边界值表示解析函数内部值的积分公式数内部值的积分公式,该公式不仅给出了解析函数该公式不仅给出了解析函数的一个积分表达式,从而成为研

52、究解析函数的有的一个积分表达式,从而成为研究解析函数的有力工具,而且提供了计算某些复变函数沿闭路积力工具,而且提供了计算某些复变函数沿闭路积分的方法分的方法.5 Cauchy积分公式积分公式最新【复变函数】 史上最全 上分析分析DCz0C1最新【复变函数】 史上最全 上DCz0C1猜想积分猜想积分最新【复变函数】 史上最全 上定理定理(Cauchy 积分公式积分公式)证明证明最新【复变函数】 史上最全 上A 最新【复变函数】 史上最全 上A 一个解析函数在圆心处的值等于它在一个解析函数在圆心处的值等于它在圆周上的平均值圆周上的平均值. .最新【复变函数】 史上最全 上例例1解解最新【复变函数】

53、 史上最全 上例例2解解CC1C21xyo最新【复变函数】 史上最全 上本节研究解析函数的无穷次可导性,并导出高本节研究解析函数的无穷次可导性,并导出高阶导数计算公式阶导数计算公式. 研究表明:一个解析函数不仅研究表明:一个解析函数不仅有一阶导数,而且有各阶导数,它的值也可用有一阶导数,而且有各阶导数,它的值也可用函数在边界上的值通过积分来表示函数在边界上的值通过积分来表示. 这一点与实这一点与实变函数有本质区别变函数有本质区别.6 解析函数的高阶导数解析函数的高阶导数最新【复变函数】 史上最全 上形式上,形式上,以下将对这些公式的正确性加以证明以下将对这些公式的正确性加以证明.最新【复变函数

54、】 史上最全 上定理定理证明证明 用数学归纳法和导数定义用数学归纳法和导数定义.最新【复变函数】 史上最全 上令为令为I最新【复变函数】 史上最全 上依次类推,用数学归纳法可得依次类推,用数学归纳法可得最新【复变函数】 史上最全 上一个解析函数的导数仍为解析函数一个解析函数的导数仍为解析函数.最新【复变函数】 史上最全 上例例1解解最新【复变函数】 史上最全 上最新【复变函数】 史上最全 上作业P100 7(3)(5)(7)(9) 8(1)(2) 9(3)(5)最新【复变函数】 史上最全 上解析函数与调和函数的关系解析函数与调和函数的关系最新【复变函数】 史上最全 上 在在66我们证明了在我们

55、证明了在D内的解析函数内的解析函数,其导数其导数仍为解析函数仍为解析函数,所以解析函数有任意阶导数所以解析函数有任意阶导数.本节本节利用这一重要结论研究解析函数与调和函数之间利用这一重要结论研究解析函数与调和函数之间的关系的关系.内内 容容 简简 介介7 解析函数与调和函数的关系解析函数与调和函数的关系最新【复变函数】 史上最全 上定义定义定理定理最新【复变函数】 史上最全 上证明:证明:设设f (z)=u(x,y)+i v(x,y)在区域在区域D内解析,则内解析,则最新【复变函数】 史上最全 上即即u及及v 在在D内满足拉普拉斯内满足拉普拉斯(Laplace)方程方程:定义定义最新【复变函数

56、】 史上最全 上上面定理说明:上面定理说明:由解析的概念得:由解析的概念得:现在研究反过来的问题:现在研究反过来的问题:最新【复变函数】 史上最全 上如如最新【复变函数】 史上最全 上定理定理最新【复变函数】 史上最全 上A 公式不用强记!可如下推出:公式不用强记!可如下推出:类似地,类似地, 然后两端积分得,然后两端积分得,最新【复变函数】 史上最全 上A 调和函数在流体力学和电磁场理论等实际调和函数在流体力学和电磁场理论等实际问题中都有重要应用问题中都有重要应用.本节介绍了调和函数与解本节介绍了调和函数与解析函数的关系析函数的关系.最新【复变函数】 史上最全 上例例1解解曲线积分法曲线积分

57、法最新【复变函数】 史上最全 上故故A 最新【复变函数】 史上最全 上又解又解凑凑全全微微分分法法最新【复变函数】 史上最全 上又解又解偏偏积积分分法法最新【复变函数】 史上最全 上又解又解不不定定积积分分法法最新【复变函数】 史上最全 上第八次课11月12日最新【复变函数】 史上最全 上& 1. 复数列的极限复数列的极限& 2. 级数的概念级数的概念第第 四四 章章 级级 数数1 复数项级数复数项级数最新【复变函数】 史上最全 上 1. 复数列的极限复数列的极限定义定义又设复常数:又设复常数:定理定理1证明证明最新【复变函数】 史上最全 上2. 级数概念级数概念级数的前级数的前n项的和项的和

58、-级数的部分和级数的部分和不收敛不收敛-无穷级数无穷级数定义定义设复数列:设复数列:最新【复变函数】 史上最全 上例例1解解定理定理2证明证明最新【复变函数】 史上最全 上A 由定理由定理2,复数项级数的收敛问题可归之为,复数项级数的收敛问题可归之为 两个实数项级数的收敛问题两个实数项级数的收敛问题.性质性质定理定理3证明证明最新【复变函数】 史上最全 上A ?定义定义由定理由定理3的证明过程,及不等式的证明过程,及不等式定理定理4最新【复变函数】 史上最全 上解解例例2:P108最新【复变函数】 史上最全 上例例3解解练习练习(P108,例例1):最新【复变函数】 史上最全 上& 1. 幂级

59、数概念幂级数概念& 2. 收敛定理收敛定理& 3. 收敛圆与收敛半径收敛圆与收敛半径& 4. 收敛半径的求法收敛半径的求法& 5. 幂级数的运算和性质幂级数的运算和性质2 幂级数幂级数最新【复变函数】 史上最全 上1. 幂级数的概念幂级数的概念定义定义设复变函数列:设复变函数列:称为复变函数项级数称为复变函数项级数级数的最前面级数的最前面n项的和项的和级数的部分和级数的部分和最新【复变函数】 史上最全 上若级数若级数(1)在在D内处处收敛,其和为内处处收敛,其和为z的函数的函数-级数级数(1)的和函数的和函数特殊情况,在级数特殊情况,在级数(1)中中称为幂级数称为幂级数最新【复变函数】 史上最

60、全 上2. 收敛定理收敛定理同实变函数一样,复变幂级数也有所谓的收敛定理:同实变函数一样,复变幂级数也有所谓的收敛定理:定理定理1 阿贝尔阿贝尔(Able)定理定理讨论P142:5最新【复变函数】 史上最全 上证明证明最新【复变函数】 史上最全 上(2)用反证法,用反证法,3. 收敛圆与收敛半径收敛圆与收敛半径由由Able定理,幂级数的收敛范围不外乎下述定理,幂级数的收敛范围不外乎下述三种情况:三种情况:(i) 若对所有正实数都收敛,级数若对所有正实数都收敛,级数(3)在复平面上在复平面上处处收敛处处收敛.(ii )除除z=0外,对所有的正实数都是发散的,这时,外,对所有的正实数都是发散的,这

61、时, 级数级数(3)在复平面上除在复平面上除z=0外处处发散外处处发散.最新【复变函数】 史上最全 上显然,显然, 否则,级数否则,级数(3)将在将在 处发散处发散.将收敛部分染成红色,发散将收敛部分染成红色,发散部分染成蓝色,部分染成蓝色, 逐渐变大,逐渐变大,在在c c 内部都是红色内部都是红色, , 逐渐变逐渐变小,在小,在c c 外部都是蓝色,外部都是蓝色,红、蓝色不会交错红、蓝色不会交错.故故播放播放最新【复变函数】 史上最全 上A ( (i) )幂级数在收敛圆内部收敛,在收敛圆外幂级数在收敛圆内部收敛,在收敛圆外部发散,在圆周上可能收敛可能发散,具体问题部发散,在圆周上可能收敛可能

62、发散,具体问题要具体分析要具体分析. .定义定义红蓝两色的分界圆周红蓝两色的分界圆周cR叫做幂级数的叫做幂级数的收敛圆;圆的半径收敛圆;圆的半径R叫做幂级数的收敛半径叫做幂级数的收敛半径.(ii)幂级数幂级数(3)的收敛范围是以的收敛范围是以0为中心,半径为为中心,半径为R的圆域;幂级数的圆域;幂级数(2)的收敛范围是以的收敛范围是以z0为中心为中心,半径半径为为R的圆域的圆域.最新【复变函数】 史上最全 上4. 收敛半径的求法收敛半径的求法 定理定理2(比值法比值法)证明证明最新【复变函数】 史上最全 上 定理定理3(根值法根值法) 定理定理2(比值法比值法)最新【复变函数】 史上最全 上第

63、九次课11月19日最新【复变函数】 史上最全 上例例1:P111解解 综上综上最新【复变函数】 史上最全 上例例2 求下列幂级数的收敛半径并讨论收敛圆周上的情形求下列幂级数的收敛半径并讨论收敛圆周上的情形:解解 (1)该级数收敛该级数收敛该级数发散该级数发散p=1p=2该级数在收敛圆上是该级数在收敛圆上是处处处处收敛的收敛的.最新【复变函数】 史上最全 上 综上综上该级数发散该级数发散.该级数收敛,该级数收敛,最新【复变函数】 史上最全 上故该级数在复平面上是处处收敛的故该级数在复平面上是处处收敛的.最新【复变函数】 史上最全 上5. 幂级数的运算和性质幂级数的运算和性质q代数运算代数运算-幂

64、级数的加、减运算幂级数的加、减运算-幂级数的乘法运算幂级数的乘法运算最新【复变函数】 史上最全 上-幂级数的代换幂级数的代换(复合复合)运算运算A 幂级幂级数的代换运数的代换运算在函数展算在函数展成幂级数中成幂级数中很有用很有用.例例3:P116解解代换代换最新【复变函数】 史上最全 上解解代换代换展开展开还原还原最新【复变函数】 史上最全 上q分析运算分析运算定理定理4-幂级数的逐项求导运算幂级数的逐项求导运算-幂级数的逐项积分运算幂级数的逐项积分运算最新【复变函数】 史上最全 上 作业P103 30(1)(2),31P141 1(2)(4),3(3)(4),6(2)(3)(4),11(1)

65、(3)最新【复变函数】 史上最全 上& 1. 泰勒展开定理泰勒展开定理& 2. 展开式的唯一性展开式的唯一性& 3. 简单初等函数的泰勒展开简单初等函数的泰勒展开式式3 泰勒泰勒(Taylor)级数级数最新【复变函数】 史上最全 上1. 泰勒泰勒(Taylor)展开定理展开定理现在研究与此相反的问题:现在研究与此相反的问题:一个解析函数能否用幂级数表达一个解析函数能否用幂级数表达?(或者说或者说,一个解析函数能否展开成幂级数一个解析函数能否展开成幂级数? 解析函解析函数在解析点能否用幂级数表示?)数在解析点能否用幂级数表示?)由由22幂级数的性质知幂级数的性质知:一个幂级数的和函数在一个幂级数

66、的和函数在它的收敛圆内部是一个解析函数它的收敛圆内部是一个解析函数.以下定理给出了肯定回答:以下定理给出了肯定回答:任何任何解析函数解析函数都一定都一定能用幂级数表示能用幂级数表示.最新【复变函数】 史上最全 上定理(泰勒展开定理)定理(泰勒展开定理)Dk分析:分析:代入代入(1)得得最新【复变函数】 史上最全 上Dkz最新【复变函数】 史上最全 上-(*)得证!得证!最新【复变函数】 史上最全 上证明证明(不讲不讲)最新【复变函数】 史上最全 上(不讲不讲)最新【复变函数】 史上最全 上证明证明(不讲不讲)最新【复变函数】 史上最全 上A 最新【复变函数】 史上最全 上2. 展开式的唯一性展

67、开式的唯一性结论结论 解析函数展开成幂级数是唯一的,就是它解析函数展开成幂级数是唯一的,就是它的的Taylor级数级数.利用泰勒级数可把解析函数展开成幂级数,这样利用泰勒级数可把解析函数展开成幂级数,这样的展开式是否唯一?的展开式是否唯一?事实上事实上,设,设f (z)用另外的方法展开为幂级数用另外的方法展开为幂级数:最新【复变函数】 史上最全 上由此可见,任何解析函数展开成幂级数就是由此可见,任何解析函数展开成幂级数就是Talor级数,因而是唯一的级数,因而是唯一的.-直接法直接法-间接法间接法代公式代公式由展开式的唯一性,运用级数的代数运算、分由展开式的唯一性,运用级数的代数运算、分 析运

68、算和析运算和 已知函数的展开式来展开已知函数的展开式来展开函数展开成函数展开成Taylor级数的方法:级数的方法:最新【复变函数】 史上最全 上3. 简单初等函数的泰勒展开式简单初等函数的泰勒展开式例例1 解解(P120)最新【复变函数】 史上最全 上A 上述求上述求sinz, cosz展开式的方法即为间接法展开式的方法即为间接法.例例2 把下列函数展开成把下列函数展开成 z 的幂级数的幂级数:解解最新【复变函数】 史上最全 上(2)由幂级数逐项求导性质得:由幂级数逐项求导性质得:最新【复变函数】 史上最全 上A(1)另一方面,因另一方面,因ln(1+z)在从在从z=-1向左沿负向左沿负实轴剪

69、开的平面内解析,实轴剪开的平面内解析, ln(1+z)离原点最近的一离原点最近的一个奇点是个奇点是-1,它的展开式的收敛范围为它的展开式的收敛范围为z1.最新【复变函数】 史上最全 上定理定理最新【复变函数】 史上最全 上第十次课11月26日最新【复变函数】 史上最全 上?最新【复变函数】 史上最全 上& 1. 预备知识预备知识& 2. 双边幂级数双边幂级数& 3. 函数展开成双边幂级数函数展开成双边幂级数& 4. 展开式的唯一性展开式的唯一性4 罗朗罗朗(Laurent)级数级数最新【复变函数】 史上最全 上 由由33 知知, f (z) 在在 z0 解析解析,则,则 f (z)总可以总可以

70、在在z0 的某一个圆域的某一个圆域 z - z0 R 内内展开成展开成 z - z0 的幂级数的幂级数.若若 f (z) 在在 z0 点不解析点不解析,在在 z0的邻域中就不可能展开成的邻域中就不可能展开成 z - z0 的幂级数,但如果在圆环域的幂级数,但如果在圆环域 R1 z - z0R2 内解析,内解析,那么,那么,f (z)能否用能否用级数表示呢?级数表示呢?例如,例如,P127最新【复变函数】 史上最全 上由此推想,若由此推想,若f (z) 在在R 1 z - z0 R2 内解析内解析, , f (z) 可以展开成级数,只是这个级数含有可以展开成级数,只是这个级数含有负幂次项负幂次项

71、,即即最新【复变函数】 史上最全 上 本节将讨论在以本节将讨论在以z 0为中心的圆环域内解析为中心的圆环域内解析的函数的级数表示法的函数的级数表示法.它是后面将要研究的解它是后面将要研究的解析函数在析函数在孤立奇点孤立奇点邻域内的性质以及定义邻域内的性质以及定义留数留数和计算留数的基础和计算留数的基础.最新【复变函数】 史上最全 上1. 预备知识预备知识Cauchy 积分公式的推广到复连通域积分公式的推广到复连通域-见第三章第见第三章第18题题P101Dz0R1R2rRk1k2D1z最新【复变函数】 史上最全 上2. 双边幂级数双边幂级数-含有正负幂项的级数含有正负幂项的级数定义定义 形如形如

72、-双边幂级数双边幂级数正幂项正幂项(包括常数项包括常数项)部分部分:负幂项部分负幂项部分:最新【复变函数】 史上最全 上级数级数(2)是一幂级数,设收敛半径为是一幂级数,设收敛半径为R2 , 则级数则级数在在z - z0= =R2 内收敛,且和为内收敛,且和为s(z)+; 在在 z - z0 =R 2外发散外发散. 最新【复变函数】 史上最全 上z0R1R2z0R2R1最新【复变函数】 史上最全 上A (2)(2)在圆环域的边界在圆环域的边界 z - z0 =R1, z - z0=R2上上, ,最新【复变函数】 史上最全 上3. 函数展开成双边幂级数函数展开成双边幂级数定理定理最新【复变函数】

73、 史上最全 上证明证明 由复连通域上的由复连通域上的Cauchy 积分公式:积分公式:Dz0R1R2rRk1k2D1z记为记为I1记为记为I2最新【复变函数】 史上最全 上式式(*1),(*2)中系数中系数cn的积分分别是在的积分分别是在k2, k1上进上进行的,在行的,在D内取绕内取绕z0的简单闭曲线的简单闭曲线c,由复合闭路,由复合闭路定理可将定理可将cn写成统一式子:写成统一式子:证毕!证毕!级数中正整次幂部分和负整次幂部分分别称为级数中正整次幂部分和负整次幂部分分别称为洛朗级数的解析部分和主要部分洛朗级数的解析部分和主要部分.最新【复变函数】 史上最全 上A (2) (2)在许多实际应

74、用中,经常遇到在许多实际应用中,经常遇到f (z)在奇点在奇点 z0的邻域内解析,需要把的邻域内解析,需要把f (z)展成级数,那么展成级数,那么 就利用洛朗(就利用洛朗( Laurent )级数来展开)级数来展开.最新【复变函数】 史上最全 上4. 展开式的唯一性展开式的唯一性结论结论 一个在某一一个在某一圆环域内解析圆环域内解析的函数展开为含的函数展开为含有正、负幂项的级数是唯一的,这个级数就是有正、负幂项的级数是唯一的,这个级数就是f (z)的洛朗级数的洛朗级数.事实上事实上,Dz0R1R2c最新【复变函数】 史上最全 上Dz0R1R2c最新【复变函数】 史上最全 上A 由唯一性,将函数

75、展开成由唯一性,将函数展开成Laurent级数,可级数,可用间接法用间接法.在大多数情况,均采用这一简便的方在大多数情况,均采用这一简便的方法求函数在指定圆环域内的法求函数在指定圆环域内的Laurent展开式,只有展开式,只有在个别情况下,才直接采用公式在个别情况下,才直接采用公式(5)求求Laurent系系数的方法数的方法. .例例1解解最新【复变函数】 史上最全 上例例2解解例例3解解最新【复变函数】 史上最全 上例例4xyo12xyo12xyo12P132最新【复变函数】 史上最全 上解解:没没有有奇奇点点最新【复变函数】 史上最全 上注意首项注意首项最新【复变函数】 史上最全 上(2)

76、(2)对于对于有理函数有理函数的的洛朗展开式,首先把有理洛朗展开式,首先把有理 函数分解成多项式与若干个最简分式之和,函数分解成多项式与若干个最简分式之和,然后利用已知的几何级数,经计算展成需要的然后利用已知的几何级数,经计算展成需要的形式形式.小结:把小结:把f (z)展成洛朗展成洛朗( Laurent )级数的方法:级数的方法:最新【复变函数】 史上最全 上解解 (1) 在在(最大的最大的)去心邻域去心邻域例例5yxo12最新【复变函数】 史上最全 上 (2) 在在(最大的最大的)去心邻域去心邻域xo12练习:练习:最新【复变函数】 史上最全 上A (2)(2)根据区域判别级数方式:根据区

77、域判别级数方式:在圆域内需要把在圆域内需要把 f (z) 展成泰勒展成泰勒(Taylor)级数,级数,在环域内需要把在环域内需要把f (z)展成洛朗展成洛朗( Laurent )级数级数.最新【复变函数】 史上最全 上A (3) Laurent级数与级数与Taylor 级数的不同点:级数的不同点: Taylor级数先展开求级数先展开求R, 找出收敛域找出收敛域. Laurent级数先求级数先求 f(z) 的奇点,然后以的奇点,然后以 z0 为中心,奇点为分隔点,找出为中心,奇点为分隔点,找出z0到无穷远到无穷远 点的所有使点的所有使 f(z) 解析的环,在环域上展成解析的环,在环域上展成 级数级数.最新【复变函数】 史上最全 上计算沿封闭路线积分中的应用P135最新【复变函数】 史上最全 上作业P143 12(1)(3),16(2)(3)最新【复变函数】 史上最全 上

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号