电力电子器件(312)课件

上传人:m**** 文档编号:567342920 上传时间:2024-07-20 格式:PPT 页数:102 大小:3.78MB
返回 下载 相关 举报
电力电子器件(312)课件_第1页
第1页 / 共102页
电力电子器件(312)课件_第2页
第2页 / 共102页
电力电子器件(312)课件_第3页
第3页 / 共102页
电力电子器件(312)课件_第4页
第4页 / 共102页
电力电子器件(312)课件_第5页
第5页 / 共102页
点击查看更多>>
资源描述

《电力电子器件(312)课件》由会员分享,可在线阅读,更多相关《电力电子器件(312)课件(102页珍藏版)》请在金锄头文库上搜索。

1、第第2章章 电力电子器件电力电子器件2.12.1电力电子器件概述电力电子器件概述电力电子器件概述电力电子器件概述2.22.2不可控器件不可控器件不可控器件不可控器件电力二极管电力二极管电力二极管电力二极管2.32.3半控型器件半控型器件半控型器件半控型器件晶闸管晶闸管晶闸管晶闸管2.42.4典型全控型器件典型全控型器件典型全控型器件典型全控型器件2.52.5其他新型电力电子器件其他新型电力电子器件其他新型电力电子器件其他新型电力电子器件2.62.6功率集成电路与集成电力电子模块功率集成电路与集成电力电子模块功率集成电路与集成电力电子模块功率集成电路与集成电力电子模块本章小结本章小结本章小结本章

2、小结1电力电子器件(312)课件电子技术的基础电子技术的基础 电子器件:晶体管和集成电路电子器件:晶体管和集成电路电力电子电路的基础电力电子电路的基础 电力电子器件电力电子器件 本章主要内容:本章主要内容:概述电力电子器件的概念概念、特点特点和分类分类等问题。介绍常用电力电子器件的工作原理工作原理、基本特性基本特性、主主要参数要参数以及选择和使用中应注意问题。第第2章章 电力电子器件电力电子器件引言:引言:2电力电子器件(312)课件2.1.1 电力电子器件的概念和特征电力电子器件的概念和特征2.1.2 应用电力电子器件的系统组成应用电力电子器件的系统组成2.1.3 电力电子器件的分类电力电子

3、器件的分类2.1.4 本章内容和学习要点本章内容和学习要点2.1 电力电子器件概述电力电子器件概述3电力电子器件(312)课件1 1)概念)概念: :电力电子器件电力电子器件(Power Electronic Device) 可直接用于主电路中,实现电能的变换或控制的电子器件。主电路(主电路(MainPowerCircuit)电气设备或电力系统中,直接承担电能的变换或控制任务的电路。2 2)分类)分类: : 电真空器件电真空器件 (汞弧整流器、闸流管) 半导体器件半导体器件 (采用的主要材料硅)2.1.1 电力电子器件的概念和特征电力电子器件的概念和特征电力电子器件电力电子器件4电力电子器件(

4、312)课件所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数。一般都远大于处理信息的电子器件。为了减小本身的损耗,提高效率,一般都工作在开关状态。由信息电子电路来控制和驱动电力电子器件。自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器。2.1.1 电力电子器件的概念和特征电力电子器件的概念和特征3)与电子器件(信息电子)相比的一般特征:)与电子器件(信息电子)相比的一般特征:5电力电子器件(312)课件通态损耗通态损耗是器件功率损耗的主要成因。器件开关频率较高时,开关损耗开关损耗可能成为器件功率损耗的主要因素。主要损耗通态损耗断态损耗开关损耗关断损耗开

5、通损耗2.1.1 电力电子器件的概念和特征电力电子器件的概念和特征 电力电子器件的损耗电力电子器件的损耗电流电流电流电流6电力电子器件(312)课件电力电子系统电力电子系统:由控制电路控制电路、驱动电路驱动电路、保护电路保护电路和以电力电子器件为核心的主电路主电路组成。图2-1 电力电子器件在实际应用中的系统组成2.1.2 应用电力电子器件系统组成应用电力电子器件系统组成图1-1 电力电子器件在实际应用中的系统组成在主电路和控制电路中附加一些电路,以保证电力电子器件和整个系统正常可靠运行控制电路检测电路驱动电路RL主电路V1V2保护电路驱动电路控制电路 主电路电气隔离7电力电子器件(312)课

6、件半控型器件(半控型器件(Thyristor) 通过控制信号可以控制其导通而不能控制其关断。全控型器件全控型器件(IGBT,MOSFET) ) 通过控制信号既可控制其导通又可控制其关断,又称自关断器件。不可控器件不可控器件( (PowerDiode) ) 不能用控制信号来控制其通断, 因此也就不需要驱动电路(如大功率二极管)。2.1.3 电力电子器件的分类电力电子器件的分类按照器件能够被控制的程度,分为以下三类:按照器件能够被控制的程度,分为以下三类:8电力电子器件(312)课件脉冲触发型脉冲触发型通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控制。电平控制型电平控制型必须

7、通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件开通并维持在导通状态或者关断并维持在阻断状态。2.1.3 电力电子器件的分类电力电子器件的分类按照驱动信号的波形分类(电力二极管除外)按照驱动信号的波形分类(电力二极管除外)9电力电子器件(312)课件2.1.3 电力电子器件的分类电力电子器件的分类按照器件内部电子和空穴两种载流子参与导电按照器件内部电子和空穴两种载流子参与导电的情况可分为三类:的情况可分为三类:1)单极型器件单极型器件2)双极型器件双极型器件3)复合型器件复合型器件由一种载流子参与导电的器件由电子和空穴两种载流子参与导电的器件由单极型器件和双极型器件集成混合而成

8、的器件10电力电子器件(312)课件电流驱动型电流驱动型通过从控制端注入或者抽出电流来实现导通或者关断的控制。电压驱动型电压驱动型仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。2.1.3 电力电子器件的分类电力电子器件的分类按照驱动电路信号的性质,分为两类:按照驱动电路信号的性质,分为两类:11电力电子器件(312)课件本章内容本章内容: :按照不可控器件、半控型器件、典型全控型器件和其它新型器件的顺序,分别介绍各种电力电子器件的工作原理、基本特性、主要参数以及选择和使用中应注意的一些问题。学习要点学习要点: :最重要的是掌握其基本特性基本特性。掌握电力电子器件的型号

9、命名法命名法,以及其参数和特性参数和特性曲线的使用方法曲线的使用方法。了解电力电子器件的半导体物理结构半导体物理结构和基本工作原理基本工作原理了解某些主电路中对其它电路元件的特殊要求。2.1.4 本章学习内容与学习要点本章学习内容与学习要点12电力电子器件(312)课件2.2.1 PN PN结与电力二极管的工作原理结与电力二极管的工作原理2.2.2 电力二极管的基本特性电力二极管的基本特性2.2.3 电力二极管的主要参数电力二极管的主要参数2.2.4 电力二极管的主要类型电力二极管的主要类型2.2 不可控器件不可控器件电力二极管电力二极管13电力电子器件(312)课件自20世纪50年代初期就获

10、得应用,但其结构和原理简单,工作可靠,直到现在电力二极管仍然大量应用于许多电气设备当中。在采用全控型器件的电路中电力二极管往往是不可缺少的,特别是开通和关断速度很快的快恢复二极管和肖特基二极管,具有不可替代的地位。2.2 不可控器件不可控器件电力二极管电力二极管引引言言整流二极管及模块14电力电子器件(312)课件基本结构和工作原理与信息电子电路中的二极管一样。由一个面积较大的PN结和两端引线以及封装组成的。从外形上看,主要有螺栓型和平板型两种封装。图2-2电力二极管的外形、结构和电气图形符号a)外形b)结构c)电气图形符号2.2.1PN结与电力二极管的工作原理结与电力二极管的工作原理AKAK

11、a)IKAPNJb)c)AK15电力电子器件(312)课件 状态参数正向导通反向截止反向击穿电流正向大几乎为零反向大电压维持1V反向大反向大阻态低阻态高阻态二极管的基本原理就在于PN结的单向导电性这一主要特征。PN结的反向击穿(两种形式)雪崩击穿齐纳击穿均可能导致热击穿2.2.1PN结与电力二极管的工作原理结与电力二极管的工作原理PN结的状态16电力电子器件(312)课件PN结的电荷量随外加电压而变化,呈现电电容容效效应应,称为结电容结电容CJ,又称为微分电容微分电容。结电容按其产生机制和作用的差别分为势势垒垒电电容容CB和扩散电容扩散电容CD。电容影响PN结的工作频率,尤其是高速的开关状态。

12、2.2.1PN结与电力二极管的工作原理结与电力二极管的工作原理PN结的电容效应:17电力电子器件(312)课件主要指其伏安特性伏安特性门门槛槛电电压压UTO,正向电流IF开始明显增加所对应的电压。与IF对应的电力二极管两端的电压即为其正正向向电电压降压降UF。承受反向电压时,只有微小而数值基本恒定的反向漏电流。图2-5电力二极管的伏安特性2.2.2 电力二极管的基本特性电力二极管的基本特性1)静态特性静态特性IOIFUTOUFU18电力电子器件(312)课件2)动态特性动态特性 二二极极管管的的电电压压- -电电流流特特性性随随时时 间变化的间变化的 结电容的存在结电容的存在2.2.2 电力二

13、极管的基本特性电力二极管的基本特性b)UFPuiiFuFtfrt02Va)IFUFtFt0trrtdtft1t2tURURPIRPdiFdtdiRdt图2-6电力二极管的动态过程波形a)正向偏置转换为反向偏置b)零偏置转换为正向偏置延迟时间:td= t1-t0,电流下降时间:tf= t2- t1反向恢复时间:trr= td+ tf恢复特性的软度:下降时间与延迟时间的比值tf/td,或称恢复系数,用Sr表示。19电力电子器件(312)课件正向压降先出现一个过冲UFP,经过一段时间才趋于接近稳态压降的某个值(如2V)。正向恢复时间tfr。电流上升率越大,UFP越高。UFPuiiFuFtfrt02V

14、图2-6(b)开通过程2.2.2 电力二极管的基本特性电力二极管的基本特性开通过程开通过程: 关断过程关断过程须经过一段短暂的时间才能重新获得反向阻断能力,进入截止状态。关断之前有较大的反向电流出现,并伴随有明显的反向电压过冲。IFUFtFt0trrtdtft1t2tURURPIRPdiFdtdiRdt图2-6(a)关断过程20电力电子器件(312)课件额额定定电电流流在指定的管壳温度和散热条件下,其允许流过的最大工频正弦半波电流的平均值。IF(AV)是按照电流的发热效应来定义的,使用时应按有有效效值值相相等等的的原原则则来选取电流定额,并应留有一定的裕量。2.2.3 电力二极管的主要参数电力

15、二极管的主要参数1)正向平均电流正向平均电流IF(AV)-额定电流额定电流21电力电子器件(312)课件在指定温度下,流过某一指定的稳态正向电流时对应的正向压降。3)反向重复峰值电压反向重复峰值电压URRM对电力二极管所能重复施加的反向最高峰值电压。使用时,应当留有两倍的裕量。4)反向恢复时间反向恢复时间trrtrr= td+ tf2.2.3 电力二极管的主要参数电力二极管的主要参数2)正向压降正向压降UF22电力电子器件(312)课件结温结温是指管芯PN结的平均温度,用TJ表示。TJM是指在PN结不致损坏的前提下所能承受的最高平均温度。TJM通常在125175C范围之内。6)浪涌电流浪涌电流

16、IFSM指电力二极管所能承受最大的连续一个或几个工频周期的过电流。2.2.3 电力二极管的主要参数电力二极管的主要参数5)最高工作结温最高工作结温TJM23电力电子器件(312)课件1)普通二极管普通二极管(GeneralPurposeDiode)又称整流二极管(RectifierDiode)多用于开关频率不高(1kHz以下)的整流电路其反向恢复时间较长(5以上)正向电流定额和反向电压定额可以达到很高按照正向压降、反向耐压、反向漏电流等性能,特别是反向恢复特性的不同介绍。2.2.4 电力二极管的主要类型电力二极管的主要类型24电力电子器件(312)课件简称快速二极管( 5以下)快恢复外延二极管

17、快恢复外延二极管(FastRecoveryEpitaxialDiodesFRED),其trr更短(可低于50ns), UF也很低(0.9V左右),但其反向耐压多在1200V以下。从性能上可分为快速恢复和超快速恢复两个等级。前者trr为数百纳秒或更长,后者则在100ns以下,甚至达到2030ns。2.2.4 电力二极管的主要类型电力二极管的主要类型2)快恢复二极管快恢复二极管 (FastRecoveryDiodeFRD)25电力电子器件(312)课件肖特基二极管的弱点弱点反向耐压提高时正向压降会提高,多用于200V以下。反向稳态损耗不能忽略,必须严格地限制其工作温度。肖特基二极管的优点优点反向恢

18、复时间很短(1040ns)。正向恢复过程中也不会有明显的电压过冲。反向耐压较低时其正向压降明显低于快恢复二极管。效率高,其开关损耗和正向导通损耗都比快速二极管还小。2.2.4 电力二极管的主要类型电力二极管的主要类型3.肖特基二极管肖特基二极管(DATASHEET) ) 以金属和半导体接触形成的势垒为基础的二极管称为肖特基势垒二极管(SchottkyBarrierDiodeSBD)。26电力电子器件(312)课件2.3 半控器件半控器件晶闸管晶闸管2.3.1 晶闸管的结构与工作原理晶闸管的结构与工作原理2.3.2 晶闸管的基本特性晶闸管的基本特性2.3.3 晶闸管的主要参数晶闸管的主要参数2.

19、3.4 晶闸管的派生器件晶闸管的派生器件27电力电子器件(312)课件2.3 半控器件半控器件晶闸管晶闸管引言引言1956年美国贝尔实验室发明了晶闸管。1957年美国通用电气公司开发出第一只晶闸管产品。1958年商业化。开辟了电力电子技术迅速发展和广泛应用的崭新时代。20世纪80年代以来,开始被全控型器件取代。能承受的电压和电流容量最高,工作可靠,在大容量的场合具有重要地位。晶晶闸闸管管(Thyristor):晶体闸流管,可控硅整流器(SiliconControlledRectifierSCR)28电力电子器件(312)课件图2-7晶闸管的外形、结构和电气图形符号a)外形b)结构c)电气图形符

20、号2.3.1晶闸管的结构与工作原理晶闸管的结构与工作原理外形有螺栓型和平板型两种封装。四层三结三端。螺栓型封装,通常螺栓是其阳极,能与散热器紧密联接且安装方便。平板型晶闸管可由两个散热器将其夹在中间。29电力电子器件(312)课件2.3.1晶闸管的结构与工作原理晶闸管的结构与工作原理常用晶闸管的结构螺栓型晶闸管晶闸管模块平板型晶闸管外形及结构30电力电子器件(312)课件2.3.1晶闸管的结构与工作原理晶闸管的结构与工作原理式中1和2分别是晶体管V1和V2的共基极电流增益;ICBO1和ICBO2分别是V1和V2的共基极漏电流。由以上式可得 :图2-8晶闸管的双晶体管模型及其工作原理a)双晶体管

21、模型b)工作原理 按晶体管的工作原理晶体管的工作原理 ,得:(2-2)(2-1)(2-3)(2-4)(2-5)31电力电子器件(312)课件2.3.1晶闸管的结构与工作原理晶闸管的结构与工作原理在低发射极电流下 是很小的,而当发射极电流建立起来之后, 迅速增大。 阻阻断断状状态态:IG=0,1+2很小。流过晶闸管的漏电流稍大于两个晶体管漏电流之和。开开通通状状态态:注入触发电流使晶体管的发射极电流增大以致1+2趋近于1的话,流过晶闸管的电流IA,将趋近于无穷大,实现饱和导通。IA实际由外电路决定。32电力电子器件(312)课件2.3.1晶闸管的结构与工作原理晶闸管的结构与工作原理阳极电压升高至

22、相当高的数值造成雪崩效应阳极电压上升率du/dt过高结温较高光触发光触发光触发可以保证控制电路与主电路之间的良好绝缘而应用于高压电力设备中,称为光光控控晶晶闸闸管管(LightTriggeredThyristorLTT)。只有门极触发是最精确、迅速而可靠的控制手段只有门极触发是最精确、迅速而可靠的控制手段。其他几种可能导通的情况其他几种可能导通的情况:33电力电子器件(312)课件2.3.2晶闸管的基本特性晶闸管的基本特性承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。晶闸管一旦导通,门极就失去控制作用。要使晶闸管关断,只能使

23、晶闸管的电流降到接近于零的某一数值以下 。晶闸管正常工作时的特性总结如下:晶闸管正常工作时的特性总结如下:34电力电子器件(312)课件2.3.2晶闸管的基本特性晶闸管的基本特性机械开关机械开关 外力作用外力作用通断通断晶闸管晶闸管脉冲触发导通脉冲触发导通电电流流电电流流接通条件接通条件 关断条件关断条件耐耐 压压通流能力通流能力动作时间动作时间35电力电子器件(312)课件2.3.2晶闸管的基本特性晶闸管的基本特性(1)正向特性正向特性IG=0时,器件两端施加正向电压,只有很小的正向漏电流,为正向阻断状态。正向电压超过正向转折电压Ubo,则漏电流急剧增大,器件开通。随着门极电流幅值的增大,正

24、向转折电压降低。晶闸管本身的压降很小,在1V左右。正向导通雪崩击穿O+UA-UA-IAIAILIG2IG1IG=0UboUDSMUDRMURRMURSM1 1) 静态特性静态特性图2-9晶闸管的伏安特性IG2IG1IG36电力电子器件(312)课件2.3.2晶闸管的基本特性晶闸管的基本特性反向特性类似二极管的反向特性。反向阻断状态时,只有极小的反相漏电流流过。当反向电压达到反向击穿电压后,可能导致晶闸管发热损坏。图2-9晶闸管的伏安特性IG2IG1IG正向导通雪崩击穿O+UA-UA-IAIAILIG2IG1IG=0UboUDSMUDRMURRMURSM(2)反向特性反向特性37电力电子器件(3

25、12)课件2.3.2晶闸管的基本特性晶闸管的基本特性1)开通过程延迟时间延迟时间td(0.51.5 s)上升时间上升时间tr(0.53 s)开开通通时时间间tgt以上两者之和, tgt=td+tr (2-6)2)关断过程反向阻断恢复时间反向阻断恢复时间trr正向阻断恢复时间正向阻断恢复时间tgr关关断断时时间间t tq以上两者之和tq=trr+tgr (2-7)普通晶闸管的关断时间约几百微秒2)动态特性动态特性图2-10晶闸管的开通和关断过程波形100%90%10%uAKttO0tdtrtrrtgrURRMIRMiAtiGtgt关断条件?关断条件?触发脉冲38电力电子器件(312)课件2.3.

26、3晶闸管的主要参数晶闸管的主要参数断态重复峰值电压断态重复峰值电压UDRM在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压。反向重复峰值电压反向重复峰值电压URRM在门极断路而结温为额定值时,允许重复加在器件上的反向峰值电压。*通态(峰值)电压通态(峰值)电压UT导通压降导通压降晶闸管通以某一规定倍数的额定通态平均电流时的瞬态峰值电压。通通常常取取晶晶闸闸管管的的UDRM和和URRM中中较较小小的的标标值值作作为为该该器件的器件的额定电压额定电压。选选用用时时,一一般般取取额额定定电电压压为为正正常常工工作作时时晶晶闸闸管管所所承承受峰值电压受峰值电压23倍倍。使用注意:使用注意:

27、1)电压定额电压定额额定电压额定电压(一般以(一般以100V100V为单位)为单位)+UA正向导通雪崩击穿O- UA-IAIAILIG2IG1IG=0UboUDSMUDRMURRMURSM39电力电子器件(312)课件2.3.3晶闸管的主要参数晶闸管的主要参数通态平均电流通态平均电流 IT(AV)在环境温度为40C和规定的冷却状态下,稳定结温不超过额定结温时所允许流过的最大最大工频正弦半波工频正弦半波电流的电流的平均值平均值。标称其额定电流的参数。使用时应按有效值相等的原则有效值相等的原则来选取晶闸管。维持电流维持电流 IH使晶闸管维持导通所必需的最小电流。擎住电流擎住电流 IL晶闸管刚从断态

28、转入通态刚从断态转入通态并移除触发信号后, 能维持(进入)导通所需的最小电流。对同一晶闸管来说对同一晶闸管来说,通常通常IL约为约为IH的的24倍倍。* *浪涌电流浪涌电流ITSM指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流 。2 2)电流定额电流定额额定电流额定电流40电力电子器件(312)课件通态电流平均值(额定电流):有效值:有效值与通态平均值之间的关系:1.52是安全系数,计算出的数值取标准值。如1A、5A、10A、20A、30A、50A、100A、200A、300A等.33选用时2.3.3晶闸管的主要参数晶闸管的主要参数41电力电子器件(312)课件图中列出

29、两个不同的电流波形,分别流经额定电流为ITa=100A的晶闸管,求其允许电流平均值。同理:可计算出图b允许平均电流(a)(b) 242电力电子器件(312)课件晶闸管型号命名法晶闸管型号命名法据据JB114475规定,规定,KP型普通晶闸管的型号和含义为:型普通晶闸管的型号和含义为:KP-晶闸管晶闸管普通型晶闸管普通型晶闸管(另有(另有K-快速型,快速型,S双向型)双向型)额定通态平均电流额定通态平均电流IF系列系列从从11000A内分内分14个规格。个规格。额定电压额定电压UD等级等级, 1000V级差为级差为100V;10003000V级差为级差为200V,单位为,单位为100V。通态平均

30、电压通态平均电压UF组别组别(小于(小于100A不标)不标)分分9级,用级,用AI表示表示0.41.2V,级差,级差0.1V例如例如KP10012G表示表示IF=100A,UD=1200V,UF=1V的普通型晶闸管。的普通型晶闸管。43电力电子器件(312)课件2.3.3晶闸管的主要参数晶闸管的主要参数 除开通时间tgt和关断时间tq外,还有:断态电压临界上升断态电压临界上升率率du/dt 指在额定结温和门极开路的情况下,不导致晶闸管从断态到通态转换的外加电压最大上升率。 电压上升率过大,使充电电流足够大,就会使晶闸管误导通。 通态电流临界上升通态电流临界上升率率di/dt 指在规定条件下,晶

31、闸管能承受而无有害影响的最大通态电流上升率。 如果电流上升太快,可能造成局部过热而使晶闸管损坏。3 3)动态参数动态参数44电力电子器件(312)课件2.3.4晶闸管的派生器件晶闸管的派生器件有快速晶闸管和高频晶闸管。开关时间以及du/dt和di/dt耐量都有明显改善。普通晶闸管关断时间数百微秒,快速晶闸管数十微秒,高频晶闸管10s左右。高频晶闸管的不足在于其电压和电流定额都不易做高。由于工作频率较高,不能忽略其开关损耗的发热效应。1 1)快速晶闸管快速晶闸管(FastSwitchingThyristorFST)45电力电子器件(312)课件2.3.4晶闸管的派生器件晶闸管的派生器件2 2)双

32、双向向晶晶闸闸管管(TriodeACSwitchTRIAC或或Bidirectionaltriodethyristor)图2-11 双向晶闸管的电气图形符号和伏安特性a)电气图形符号b)伏安特性a)b)IOUIG=0GT1T2可认为是一对反并联联接的普通晶闸管的集成。有两个主电极T1和T2,一个门极G。在第和第III象限有对称的伏安特性。不用平均值而不用平均值而用有效值用有效值来表示其额定电流值来表示其额定电流值。46电力电子器件(312)课件2.3.4晶闸管的派生器件晶闸管的派生器件3)逆逆导导晶晶闸闸管管(Reverse ConductingThyristorRCT)a)KGAb)UOII

33、G=0图2-12逆导晶闸管的电气图形符号和伏安特性a)电气图形符号b)伏安特性将晶闸管反并联一个二极管制作在同一管芯上的功率集成器件。具有正向压降小、关断时间短、高温特性好、额定结温高等优点。47电力电子器件(312)课件2.3.4晶闸管的派生器件晶闸管的派生器件4)光光控控晶晶闸闸管管(LightTriggeredThyristorLTT)AGKa)AK光强度强弱b)OUIA图2-13光控晶闸管的电气图形符号和伏安特性a)电气图形符号b)伏安特性又称光触发晶闸管,是利用一定波长的光照信号触发导通的晶闸管。光触发保证了主电路与控制电路之间的绝缘,且可避免电磁干扰的影响。因此目前在高压大功率的场

34、合。48电力电子器件(312)课件2.4典型全控型器件典型全控型器件2.4.1 门极可关断晶闸管门极可关断晶闸管2.4.2 电力晶体管电力晶体管2.4.3 电力场效应晶体管电力场效应晶体管2.4.4 绝缘栅双极晶体管绝缘栅双极晶体管49电力电子器件(312)课件2.4典型全控型器件典型全控型器件引言引言门极可关断晶闸管在晶闸管问世后不久出现。20世纪80年代以来,电力电子技术进入了一个崭新时代。典型全控型器件:典型全控型器件: 门门极极可可关关断断晶晶闸闸管管、电电力力晶晶体体管管、电电力力场场效效应应晶晶体体管管、绝缘栅双极晶体管。绝缘栅双极晶体管。50电力电子器件(312)课件2.4典型全

35、控型器件典型全控型器件引言引言常用的常用的典型全控型器件典型全控型器件电力MOSFETIGBT单管及模块51电力电子器件(312)课件2.4.1门极可关断晶闸管门极可关断晶闸管晶闸管的一种派生器件派生器件。可以通过在门极施加负的脉冲电流使其关断通过在门极施加负的脉冲电流使其关断。GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上的大功率场合仍有较多的应用。门门极极可可关关断断晶晶闸闸管管(Gate-Turn-OffThyristorGTO)52电力电子器件(312)课件2.4.1门极可关断晶闸管门极可关断晶闸管结构结构:与普通晶闸管的相相同同点点:PNPN四四层层半半导导体体结结构

36、构,外部引出阳极、阴极和门极。和普通晶闸管的不同点不同点:GTO是一种多元的功率集成器件多元的功率集成器件。图2-14GTO的内部结构和电气图形符号a)各单元的阴极、门极间隔排列的图形b)并联单元结构断面示意图c)电气图形符号1)GTO的结构和工作原理的结构和工作原理53电力电子器件(312)课件2.4.1门极可关断晶闸管门极可关断晶闸管工作原理工作原理:与普通晶闸管一样,可以用图2-8所示的双晶体管模型来分析。图2-8 晶闸管的双晶体管模型及其工作原理 1 1+ + 2 2=1=1是器件临界导通的条件。是器件临界导通的条件。由P1N1P2和N1P2N2构成的两个晶体管V1、V2分别具有共基极

37、电流增益 1 1和 2 2。54电力电子器件(312)课件2.4.1门极可关断晶闸管门极可关断晶闸管GTO能够通过门极关断的原因是其与普通晶闸管有如下区别区别:设计设计 2较大,使晶体管较大,使晶体管V2控控制灵敏制灵敏,易于GTO。导通时1+2更接近1,导通时接近临界饱和,有利门极控制关断,但导通时管压导通时管压降增大。降增大。多元集成结构多元集成结构,使得P2基区横向电阻很小,能从门极抽能从门极抽出较大电流。出较大电流。图2-8晶闸管的工作原理55电力电子器件(312)课件2.4.1门极可关断晶闸管门极可关断晶闸管正向脉冲触发导通。GTO导通过程与普通晶闸管一样,只是导通时饱和程度较浅。反

38、向脉冲触发关断。GTO关断过程中有强烈正反馈使器件退出饱和而关断。多元集成结构还使GTO比普通晶闸管开通过程快,承受di/dt能力强 。由上述分析我们可以得到以下结论结论:56电力电子器件(312)课件2.4.1门极可关断晶闸管门极可关断晶闸管开开通通过过程程:与普通晶闸管相同关关断断过过程程:与普通晶闸管有所不同储储存存时时间间ts,使等效晶体管退出饱和。下降时间下降时间tf尾尾部部时时间间tt残存载流子复合。通常tf比ts小得多,而tt比ts要长。门极负脉冲电流幅值越大,ts越短。Ot0tiGiAIA90%IA10%IAtttftstdtrt0t1t2t3t4t5t6图2-15GTO的开通

39、和关断过程电流波形2)GTO的动态特性的动态特性57电力电子器件(312)课件2.4.1门极可关断晶闸管门极可关断晶闸管3)GTO的主要参数的主要参数延迟时间与上升时间之和。延迟时间一般约12s,上升时间则随通态阳极电流的增大而增大。一般指储存时间和下降时间之和,不包括尾部时间。下降时间一般小于2s。(2)关断时间关断时间toff(1)开通时间开通时间ton不少GTO都制造成逆导型,类似于逆导晶闸管,需承受反压时,应和电力二极管串联。许多参数和普通晶闸管相应的参数意义相同,以下只介绍意义不同的参数。逆导型GTO58电力电子器件(312)课件2.4.1门极可关断晶闸管门极可关断晶闸管(3)最大可

40、关断阳极电流)最大可关断阳极电流IATO(4)电流关断增益电流关断增益 off off一般很小,只有5左右,这是GTO的一个主要缺点。1000A的GTO关断时门极负脉冲电流峰值要200A。GTO额定电流。最大可关断阳极电流与门极负脉冲电流最大值IGM之比称为电流关断增益。(2-8)59电力电子器件(312)课件2.4.2电力晶体管电力晶体管电力晶体管电力晶体管:GTR(GiantTransistorGTR,巨型晶体管)。耐高电压、大电流的双极结型晶体管。应用应用20世纪80年代以来,在中、小功率范围内取代晶闸管,但目前又大多被IGBT和电力MOSFET取代。60电力电子器件(312)课件与普通

41、的双极结型晶体管基本原理是一样的。主要特性是耐压高、电流大、开关特性好。通常采用至少由两个晶体管按达林顿接法组成的单元结构。采用集成电路工艺将许多这种单元并联而成。2.4.2电力晶体管电力晶体管1)GTR的结构和工作原理的结构和工作原理图2-16GTR的结构、电气图形符号和内部载流子的流动a)内部结构断面示意图b)电气图形符号c)内部载流子的流动61电力电子器件(312)课件2.4.2电力晶体管电力晶体管在应用中,GTR一般采用共发射极接法。集电极电流ic与基极电流ib之比为(2-9) GTR的电流放大系数电流放大系数,反映了基极电流对集电极电流的控制能力。当考虑到集电极和发射极间的漏电流Ic

42、eo时,ic和ib的关系为ic= ib+Iceo(2-10)单单管管GTR的的 值值比比小小功功率率的的晶晶体体管管小小得得多多,通通常常为为10左右,采用达林顿接法可有效增大电流增益左右,采用达林顿接法可有效增大电流增益。空穴流电子流c)EbEcibic=ibie=(1+ )ib1)GTR的结构和工作原理的结构和工作原理62电力电子器件(312)课件2.4.2电力晶体管电力晶体管(1)静态特性静态特性共发射极接法时的典型输出特性:截截止止区区、放放大大区区和饱和区饱和区。在在电电力力电电子子电电路路中中GTR工工作在开关状态。作在开关状态。在开关过程中,即在截止区和饱和区之间过渡时,要经过放

43、大区。截止区放大区饱和区OIcib3ib2ib1ib1ib2BUcexBUcesBUcerBuceo。实际使用时,最高工作电压要比BUceo低得多。BUceo65电力电子器件(312)课件2.4.2电力晶体管电力晶体管通常规定为hFE下降到规定值的1/21/3时所对应的Ic。实际使用时要留有裕量,只能用到IcM的一半或稍多一点。(3)集电极最大耗散功率集电极最大耗散功率PcM最高工作温度下允许的耗散功率。产品说明书中给PcM时同时给出壳温TC,间接表示了最高工作温度。(2)集电极最大允许电流集电极最大允许电流IcM66电力电子器件(312)课件2.4.2电力晶体管电力晶体管一次击穿一次击穿:集

44、电极电压升高至击穿电压时,Ic迅速增大。只要Ic不超过限度,GTR一般不会损坏,工作特性也不变。二次击穿二次击穿:一次击穿发生时,Ic突然急剧上升,电压陡然下降。常常立即导致器件的永久损坏,或者工作特性明显衰变。安全工作区(安全工作区(SafeOperatingAreaSOA)最高电压UceM、集电极最大电流IcM、最大耗散功率PcM、二次击穿临界线限定。SOAOIcIcMPSBPcMUceUceM图2-19GTR的安全工作区4)GTR的二次击穿现象与安全工作区的二次击穿现象与安全工作区二次击穿功率耗散功率67电力电子器件(312)课件2.4.3电力场效应晶体管电力场效应晶体管分为结型结型和绝

45、缘栅型绝缘栅型通常主要指绝绝缘缘栅栅型型中的MOSMOS型型(MetalOxideSemiconductorFET)简称电力MOSFET(PowerMOSFET)结型电力场效应晶体管一般称作静电感应晶体管(StaticInductionTransistorSIT)特点特点用栅极电压来控制漏极电流驱动电路简单,需要的驱动功率小。开关速度快,工作频率高。热稳定性优于GTR。电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。电力场效应晶体管电力场效应晶体管68电力电子器件(312)课件2.4.3电力场效应晶体管电力场效应晶体管电力电力MOSFET的种类的种类按导电沟道可分为P沟道沟道

46、和N沟道沟道。耗耗尽尽型型当栅极电压为零时漏源极之间就存在导电沟道。增增强强型型对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道。电力MOSFET主要是N沟道增强型沟道增强型。1)电力)电力MOSFET的结构和工作原理的结构和工作原理69电力电子器件(312)课件2.4.3电力场效应晶体管电力场效应晶体管电力电力MOSFET的结构的结构是单极型晶体管。导电机理与小功率MOS管相同,但结构上有较大区别。采用多元集成结构多元集成结构,不同的生产厂家采用了不同设计。图2-20电力MOSFET的结构和电气图形符号70电力电子器件(312)课件2.4.3电力场效应晶体管电力场效应晶体管小功率

47、MOS管是横向导电器件。电 力 MOSFET大 都 采 用 垂 直 导 电 结 构 , 又 称 为VMOSFET(VerticalMOSFET)。按垂直导电结构的差异,分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET(VerticalDouble-diffusedMOSFET)。这里主要以VDMOS器件为例进行讨论。电力电力MOSFET的结构的结构71电力电子器件(312)课件2.4.3电力场效应晶体管电力场效应晶体管截止截止:漏源极间加正电源,栅源极间电压为零。P基区与N漂移区之间形成的PN结J1反偏,漏源极之间无电流流过。导电导电:在栅源极间加正

48、电压UGS当UGS大于UT时,P型半导体反型成N型而成为反反型型层层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电。图2-20电力MOSFET的结构和电气图形符号电力电力MOSFET的工作原理的工作原理72电力电子器件(312)课件2.4.3电力场效应晶体管电力场效应晶体管(1)静态特性静态特性漏极电流ID和栅源间电压UGS的关系称为MOSFET的转移特性转移特性。ID较大时,ID与与UGS的关系近似线性,曲线的斜率定义为跨导跨导Gfs。010203050402468a)10203050400b)1020 305040饱和区非饱和区截止区ID/AUTUGS/VUDS/VUGS=UT=3

49、VUGS=4VUGS=5VUGS=6VUGS=7VUGS=8VID/A图2-21电力MOSFET的转移特性和输出特性a)转移特性b)输出特性2)电力)电力MOSFET的基本特性的基本特性73电力电子器件(312)课件2.4.3电力场效应晶体管电力场效应晶体管截止区截止区(对应于GTR的截止区)饱和区饱和区(对应于GTR的放大区)非饱和区非饱和区(对应GTR的饱和区)工作在开关状态,即在截止区和非饱和区之间来回转换。漏源极之间有寄生二极管,漏源极间加反向电压时器件导通。通态电阻具有正温度系数,对器件并联时的均流有利。图2-21电力MOSFET的转移特性和输出特性a)转移特性b)输出特性MOSFE

50、T的漏极伏安特性的漏极伏安特性:010203050402468a)10203050400b)10 20 305040饱和区非饱和区截止区ID/AUTUGS/VUDS/VUGS=UT=3VUGS=4VUGS=5VUGS=6VUGS=7VUGS=8VID/A74电力电子器件(312)课件2.4.3电力场效应晶体管电力场效应晶体管开通过程开通过程开通延迟时间开通延迟时间td(on)上升时间上升时间tr开开通通时时间间ton开通延迟时间与上升时间之和关断过程关断过程关断延迟时间关断延迟时间td(off)下降时间下降时间tf关关断断时时间间toff关断延迟时间和下降时间之和a)b)RsRGRFRLiDu

51、GSupiD信号+UEiDOOOuptttuGSuGSPuTtd(on)trtd(off)tf图2-22电力MOSFET的开关过程a)测试电路b)开关过程波形up脉冲信号源,Rs信号源内阻,RG栅极电阻,RL负载电阻,RF检测漏极电流(2)动态特性动态特性75电力电子器件(312)课件2.4.3电力场效应晶体管电力场效应晶体管MOSFET的开关速度和Cin充放电有很大关系。可降低驱动电路内阻Rs减小时间常数,加快开关速度。不存在少子储存效应,关断过程非常迅速。开关时间在10100ns之间,工作频率可达100kHz以上,是主要电力电子器件中最高的。场控器件,静态时几乎不需输入电流。但在开关过程中

52、需对输入电容充放电,仍需一定的驱动功率。开关频率越高,所需要的驱动功率越大。MOSFET的开关速度的开关速度76电力电子器件(312)课件2.4.3电力场效应晶体管电力场效应晶体管3)电力电力MOSFET的主要参数的主要参数电力MOSFET电压定额(1)漏极电压漏极电压UDS(2)漏极直流电流漏极直流电流ID和漏极脉冲电流幅值和漏极脉冲电流幅值IDM电力MOSFET电流定额(3)栅源电压栅源电压UGSUGS20V将导致绝缘层击穿。除跨导Gfs、开启电压UT以及td(on)、tr、td(off)和tf之外还有:(4)极间电容极间电容极间电容CGS、CGD和CDS77电力电子器件(312)课件2.

53、4.4 绝缘栅双极晶体管绝缘栅双极晶体管两类器件取长补短结合而成的复合器件Bi-MOS器件绝绝缘缘栅栅双双极极晶晶体体管管(Insulated-gateBipolarTransistorIGBT或IGT)GTR和MOSFET复合,结合二者的优点。1986年投入市场,是中小功率电力电子设备的主导器件。继续提高电压和电流容量,以期再取代GTO的地位。GTR和GTO的特点双极型,电流驱动,有电导调制效应,通流能力很强,开关速度较低,所需驱动功率大,驱动电路复杂。MOSFET的优点单极型,电压驱动,开关速度快,输入阻抗高,热稳定性好,所需驱动功率小而且驱动电路简单。78电力电子器件(312)课件2.4

54、.4 绝缘栅双极晶体管绝缘栅双极晶体管1)IGBT的结构和工作原理的结构和工作原理三端器件:栅极G、集电极C和发射极E图2-23IGBT的结构、简化等效电路和电气图形符号a)内部结构断面示意图b)简化等效电路c)电气图形符号E79电力电子器件(312)课件2.4.4 绝缘栅双极晶体管绝缘栅双极晶体管图2-23aN沟道VDMOSFET与GTR组合N沟道IGBT。IGBT比VDMOSFET多一层P+注入区,具有很强的通流能力。简化等效电路表明,IGBT是GTR与MOSFET组成的达林顿结构,一个由MOSFET驱动的厚基区PNP晶体管。RN为晶体管基区内的调制电阻。图2-23IGBT的结构、简化等效

55、电路和电气图形符号a)内部结构断面示意图b)简化等效电路c)电气图形符号IGBT的结构的结构80电力电子器件(312)课件2.4.4 绝缘栅双极晶体管绝缘栅双极晶体管驱动原理与电力MOSFET基本相同,场控器件,通断由栅射极电压uGE决定。导导通通:uGE大于开开启启电电压压UGE(th)时,MOSFET内形成沟道,为晶体管提供基极电流,IGBT导通(电压驱动功率小驱动功率小)。通态压降通态压降:电导调制效应使电阻RN减小,通态压降减小通态压降减小。关关断断:栅射极间施加反压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,IGBT关断(关断功率小关断功率小)。IGBT的原理的原

56、理81电力电子器件(312)课件a)b)O有源区正向阻断区饱和区反向阻断区ICUGE(th)UGEOICURMUFMUCEUGE(th)UGE增加2.4.4 绝缘栅双极晶体管绝缘栅双极晶体管2)IGBT的基本特性的基本特性(1)IGBT的静态特性的静态特性图2-24IGBT的转移特性和输出特性a)转移特性b)输出特性转移特性转移特性IC与UGE间的关系(开启电开启电压压UGE(th)输出特性输出特性分为三个区域:正向阻断区、有源区和饱和区。82电力电子器件(312)课件2.4.4 绝缘栅双极晶体管绝缘栅双极晶体管ttt10%90%10%90%UCEIC0O0UGEUGEMICMUCEMtfv1

57、tfv2tofftontfi1tfi2td(off)tftd(on)trUCE(on)UGEMUGEMICMICM图2-25IGBT的开关过程IGBT的开通过程的开通过程与MOSFET的相似开通延迟时间开通延迟时间td(on)电流上升时间电流上升时间tr 开通时间开通时间tonuCE的下降过程分为tfv1和tfv2两段。 tfv1IGBT中MOSFET单独工作的电压下降过程; tfv2MOSFET和 PNP晶体管同时工作的电压下降过程。(2)IGBTIGBT的动态特性的动态特性83电力电子器件(312)课件2.4.4 绝缘栅双极晶体管绝缘栅双极晶体管图2-24IGBT的开关过程关断延迟时间关断

58、延迟时间td(off)电流下降时间电流下降时间关断时间关断时间toff电流下降时间又可分为tfi1和tfi2两段。tfi1IGBT器件内部的MOSFET的关断过程,iC下降较快。tfi2IGBT内部的PNP晶体管的关断过程,iC下降较慢。IGBT的关断过程的关断过程ttt10%90%10%90%UCEIC0O0UGEUGEMICMUCEMtfv1tfv2tofftontfi1tfi2td(off)tftd(on)trUCE(on)UGEMUGEMICMICM84电力电子器件(312)课件2.4.4 绝缘栅双极晶体管绝缘栅双极晶体管3)IGBT的主要参数的主要参数正常工作温度下允许的最大功耗。(

59、3)最大集电极功耗最大集电极功耗PCM包括额定直流电流IC和1ms脉宽最大电流ICP。(2)最大集电极电流最大集电极电流ICM由内部PNP晶体管的击穿电压确定。(1)最大集射极间电压最大集射极间电压UCES85电力电子器件(312)课件2.4.4 绝缘栅双极晶体管绝缘栅双极晶体管IGBT的特性和参数特点可以总结如下的特性和参数特点可以总结如下:开关速度高,开关损耗小。相同电压和电流定额时,安全工作区比GTR大,且具有耐脉冲电流冲击能力。通态压降比VDMOSFET低。输入阻抗高,输入特性与MOSFET类似。与MOSFET和GTR相比,耐压和通流能力还可以进一步提高,同时保持开关频率高的特点。86

60、电力电子器件(312)课件2.4.4 绝缘栅双极晶体管绝缘栅双极晶体管擎住效应或自锁效应擎住效应或自锁效应:IGBT往往与反并联的快速二极管封装在一起,制成模块,成为逆导器件。反向偏置安全工作区反向偏置安全工作区(RBSOA)正偏安全工作区正偏安全工作区(FBSOA)NPN晶体管基极与发射极之间存在体区短路电阻,P形体区的横向空穴电流会在该电阻上产生压降,相当于对T2的基极施加正偏压,一旦T2开通,栅极就会失去对集电极电流的控制作用,电流失控。逆导型IGBT87电力电子器件(312)课件2.5其他新型电力电子器件其他新型电力电子器件2.5.1MOS2.5.1MOS控制晶闸管控制晶闸管控制晶闸管

61、控制晶闸管MCTMCT2.5.22.5.2静电感应晶体管静电感应晶体管静电感应晶体管静电感应晶体管SITSIT2.5.32.5.3静电感应晶闸管静电感应晶闸管静电感应晶闸管静电感应晶闸管SITHSITH2.5.42.5.4集成门极换流晶闸管集成门极换流晶闸管集成门极换流晶闸管集成门极换流晶闸管IGCTIGCT2.5.52.5.5 基于宽禁带半导体材料的电力电子器件基于宽禁带半导体材料的电力电子器件88电力电子器件(312)课件2.5.1MOS控制晶闸管控制晶闸管MCTMCT结合了二者的优点:承受极高di/dt和du/dt,快速的开关过程,开关损耗小。高电压,大电流、高载流密度,低导通压降。一个

62、MCT器件由数以万计的MCT元组成。每个元的组成为:一个PNPN晶闸管,一个控制该晶闸管开通的MOSFET,和一个控制该晶闸管关断的MOSFET。其关键技术问题没有大的突破,电压和电流容量都远未达到预期的数值,未能投入实际应用。MCT(MOSControlledThyristor)MOSFET与晶闸管的复合(DATASHEET)89电力电子器件(312)课件2.5.1MOS控制晶闸管控制晶闸管MCTMOS控制晶闸管内部等效结构图90电力电子器件(312)课件2.5.2静电感应晶体管静电感应晶体管SITSIT多子导电的器件,工作频率与电力MOSFET相当,甚至更高,功率容量更大,因而适用于高频大

63、功率场合。在雷达通信设备、超声波功率放大、脉冲功率放大和高频感应加热等领域获得应用。缺点缺点:栅极不加信号时导通,加负偏压时关断,称为正正常常导导通通型型器件,使用不太方便。通态电阻较大,通态损耗也大,因而还未在大多数电力电子设备中得到广泛应用。SIT(StaticInductionTransistor)结型感应晶体管91电力电子器件(312)课件静电感应晶体管SIT内部等效结构图2.5.2静电感应晶体管静电感应晶体管SITSIT92电力电子器件(312)课件2.5.3静电感应晶闸管静电感应晶闸管SITHSITHSITH是两种载流子导电的双极型器件,具有电导调制效应,通态压降低、通流能力强。其

64、很多特性与GTO类似,但开关速度比GTO高得多,是大容量的快速器件。SITH一般也是正常导通型,但也有正常关断型。此外,电流关断增益较小,因而其应用范围还有待拓展。SITH(StaticInductionThyristor)场控晶闸管(FieldControlledThyristorFCT)93电力电子器件(312)课件2.5.4集成门极换流晶闸管集成门极换流晶闸管IGCTIGCT20世纪90年代后期出现,结合了IGBT与GTO的优点,容量与GTO相当,开关速度快10倍。可省去GTO复杂的缓冲电路,但驱动功率仍很大。目前正在与IGBT等新型器件激烈竞争,试图最终取代GTO在大功率场合的位置。I

65、GCT(IntegratedGate-CommutatedThyristor)GCT(Gate-CommutatedThyristor)94电力电子器件(312)课件2.5.5基于宽禁带半导体材料的电力电子器件基于宽禁带半导体材料的电力电子器件硅的禁带宽度为1.12电子伏特(eV),而宽禁带半导体材料是指禁带宽度在3.0电子伏特左右及以上的半导体材料,典型的是碳化硅(SiC)、氮化镓(GaN)、金刚石等材料。基于宽禁带半导体材料(如碳化硅)的电力电子器件将具有比硅器件高得多的耐受高电压的能力、低得多的通态电阻、更好的导热性能和热稳定性以及更强的耐受高温和射线辐射的能力,许多方面的性能都是成数量

66、级的提高。宽禁带半导体器件的发展一直受制于材料的提炼和制造以及随后的半导体制造工艺的困难。95电力电子器件(312)课件2.6功率集成电路与集成电力电子模块功率集成电路与集成电力电子模块20世纪80年代中后期开始,模块化趋势,将多个器件封装在一个模块中,称为功率模块功率模块。可缩小装置体积,降低成本,提高可靠性。对工作频率高的电路,可大大减小线路电感,从而简化对保护和缓冲电路的要求。将器件与逻辑、控制、保护、传感、检测、自诊断等信息电子电路制作在同一芯片上,称为功功率率集集成成电电路路(PowerIntegratedCircuitPIC)。基本概念基本概念96电力电子器件(312)课件2.6功

67、率集成电路与集成电力电子模块功率集成电路与集成电力电子模块高高压压集集成成电电路路(HighVoltageICHVIC)一般指横向高压器件与逻辑或模拟控制电路的单片集成。智智能能功功率率集集成成电电路路(SmartPowerICSPIC)一般指纵向功率器件与逻辑或模拟控制电路的单片集成。智智能能功功率率模模块块(IntelligentPowerModuleIPM)则专指IGBT及其辅助器件与其保护和驱动电路的单片集成,也称智能IGBT(IntelligentIGBT)。实际应用电路实际应用电路97电力电子器件(312)课件2.6功率集成电路与集成电力电子模块功率集成电路与集成电力电子模块98电

68、力电子器件(312)课件2.6功率集成电路与集成电力电子模块功率集成电路与集成电力电子模块功率集成电路的主要技术难点:高低压电路之间的绝缘问题以及温升和散热的处理。以前功率集成电路的开发和研究主要在中小功率应用场合。智能功率模块在一定程度上回避了上述两个难点,最近几年获得了迅速发展。功率集成电路实现了电能和信息的集成,成为机电一体化的理想接口。发展现状发展现状99电力电子器件(312)课件图2-26电力电子器件分类“树”本章小结本章小结主要内容主要内容全面介绍各种主要电力电子器件的基本结构、工作原理、基本特性和主要参数等。电力电子器件类型归纳电力电子器件类型归纳单极型单极型:电力MOSFET和

69、SIT双极型双极型:电力二极管、晶闸管、GTO、GTR和SITH复合型复合型:IGBT、MCT和IGCT100电力电子器件(312)课件本章小结本章小结特特点点:输入阻抗高,所需驱动功率小,驱动电路简单,工作频率高。电流驱动型电流驱动型:双极型器件中除SITH外特特点点:具有电导调制效应,因而通态压降低,导通损耗小,但工作频率较低,所需驱动功率大,驱动电路较复杂。电电压压驱驱动动型型:单极型器件和复合型器件,双极型器件中的SITH101电力电子器件(312)课件本章小结本章小结20世纪90年代中期以来,逐渐形成了小功率(10kW以下)场合以电力MOSFET为主,中、大功率场合以IGBT为主的压倒性局面,在10MVA以上或者数千伏以上的应用场合,如果不需要自关断能力,那么晶闸管仍然是目前的首选器件。电力MOSFET和IGBT中的技术创新仍然在继续,IGBT还在不断夺取传统上属于晶闸管的应用领域。宽禁带半导体材料由于其各方面性能都优于硅材料,因而是很有前景的电力半导体材料。电力电子器件的现状和发展趋势:102电力电子器件(312)课件

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 教学/培训

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号