江苏省赣马高级中学10-11学年高一数学 函数的奇偶性(1)导学案 苏教版

上传人:人*** 文档编号:562214019 上传时间:2022-12-01 格式:DOC 页数:8 大小:302.51KB
返回 下载 相关 举报
江苏省赣马高级中学10-11学年高一数学 函数的奇偶性(1)导学案 苏教版_第1页
第1页 / 共8页
江苏省赣马高级中学10-11学年高一数学 函数的奇偶性(1)导学案 苏教版_第2页
第2页 / 共8页
江苏省赣马高级中学10-11学年高一数学 函数的奇偶性(1)导学案 苏教版_第3页
第3页 / 共8页
江苏省赣马高级中学10-11学年高一数学 函数的奇偶性(1)导学案 苏教版_第4页
第4页 / 共8页
江苏省赣马高级中学10-11学年高一数学 函数的奇偶性(1)导学案 苏教版_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《江苏省赣马高级中学10-11学年高一数学 函数的奇偶性(1)导学案 苏教版》由会员分享,可在线阅读,更多相关《江苏省赣马高级中学10-11学年高一数学 函数的奇偶性(1)导学案 苏教版(8页珍藏版)》请在金锄头文库上搜索。

1、赣马高级中学2010级高一数学 函数的奇偶性(1)导学案【学习导航】 知识网络 函数奇偶性奇偶性定义奇偶性与函数图像奇偶性的证明单调区间定义学习要求 1了解函数奇偶性的含义;2掌握判断函数奇偶性的方法,能证明一些简单函数的奇偶性;3初步学会运用函数图象理解和研究函数的性质【新课导学】1偶函数的定义: 如果对于函数的定义域内的任意一个,都有 ,那么称函数是偶函数注意:() “任意”、“都有”等关键词;()奇偶性是函数的整体性质,对定义域内任意一个都必须成立;2奇函数的定义: 如果对于函数的定义域内的任意一个,都有 ,那么称函数是奇函数3函数图像与单调性:奇函数的图像关于 对称;偶函数的图像关于

2、对称4函数奇偶性证明的步骤:(1) ;(2) ;(3) .【互动探究】一判断函数的奇偶性:例1:判断下列函数是否是奇函数或偶函数: 判断下列函数的奇偶性:(1)(2)(3),(4) (5)析:函数的奇偶性的判断和证明主要用定义。【解】二根据函数奇偶性定义求一些特殊的函数值:例2:已知函数是定义域为的奇函数,求的值【解】三已知函数的奇偶性求参数值:例3:已知函数是偶函数,求实数的值【迁移应用】1. 给定四个函数;其中是奇函数的个数是 个2. 如果二次函数是偶函数,则 3. 判断下列函数的奇偶性:(1) (2)(3)解:1偶函数的定义: 如果对于函数的定义域内的任意一个,都有,那么称函数是偶函数注

3、意:() “任意”、“都有”等关键词;()奇偶性是函数的整体性质,对定义域内任意一个都必须成立;2奇函数的定义: 如果对于函数的定义域内的任意一个,都有,那么称函数是奇函数3函数图像与单调性:奇函数的图像关于原点对称;偶函数的图像关于轴对称4函数奇偶性证明的步骤:(1)考察函数的定义域是否关于“0”对称;(2)计算的解析式,并考察其与的解析式的关系 ;(3)下结论 .例1:判断下列函数是否是奇函数或偶函数: 判断下列函数的奇偶性:(1)(2)(3),(4) (5)析:函数的奇偶性的判断和证明主要用定义。【解】(1) 函数的定义域为,关于原点对称,且,所以该函数是奇函数。(2)函数的定义域为,关

4、于原点对称,且,所以该函数既不是奇函数也不是偶函数,即是非奇非偶函数。(3) 函数,的定义域为不关于原点对称,故该函数是非奇非偶函数。(4)函数的定义域为,关于原点对称,所以该函数既是奇函数又是偶函数。(5) 函数的定义域为,关于原点对称,所以该函数是偶函数。二根据函数奇偶性定义求一些特殊的函数值:例2:已知函数是定义域为的奇函数,求的值【解】是定义域为的奇函数,对任意实数都成立,把代入得,例3:已知函数是偶函数,求实数的值【解】是偶函数,恒成立,即恒成立,恒成立,即追踪训练一1. 给定四个函数;其中是奇函数的个数是(B)个个个个2. 如果二次函数是偶函数,则3. 判断下列函数的奇偶性:(1)

5、 (2)(3)解:(1)函数的定义域为,关于原点对称, 对于定义域中的任意一个,所以该函数是偶函数;(2)函数 的定义域得关于原点对称,此时对于定义域中的任意一个, 所以该函数是奇函数;(3) 函数的定义域为关于原点对称,此时,所以该函数既是奇函数又是偶函数。例: 已知函数若,求的值。析:该函数解析式中含有两个参数,只有一个等式,故一般不能求得的值,而两个自变量互为相反数,我们应该从这儿着手解决问题。【解】方法一:由题意得得方法二:构造函数,则一定是奇函数 又, 因此 所以,即说明:如果函数是奇函数或偶函数,我们就说函数具有奇偶性;根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函

6、数、既不是奇函数也不是偶函数;奇、偶函数的定义域关于“0”对称如果一个函数的定义域不关于“0”对称,则该函数既不是奇函数也不是偶函数;一、等式和的变形形式:我们在探讨或证明函数的奇偶性过程中,处了将进行化简,其方向是或以外,我们还可以看到其等价形式、或当恒成立时,也有、追踪训练1下列结论正确的是:(C )偶函数的图象一定与轴相交;奇函数的图象一定过原点;偶函数的图象若不经过原点,则它与轴的交点的个数一定是偶数;定义在上的增函数一定是奇函数2. 若函数为奇函数,且当时,则当时,有(C) ( ) 0 3. 设函数f(x)在(,)内有定义,下列函数y=| f(x)|y=xf(x2)y=f(x)y= f(x)f(x)中必为奇函数的有_(要求填写正确答案的序号)4. 设奇函数f(x)的定义域为5,5.若当x0,5时, f(x)的图象如下图,则不等式的解是 .5若是定义在上的函数,是奇函数,是偶函数,且,求的表达式 解:由题意得:则

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 幼儿/小学教育 > 小学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号