动物集群运动行为模型系列之五-毕业论文.doc

上传人:鲁** 文档编号:559850782 上传时间:2023-01-09 格式:DOC 页数:26 大小:974.50KB
返回 下载 相关 举报
动物集群运动行为模型系列之五-毕业论文.doc_第1页
第1页 / 共26页
动物集群运动行为模型系列之五-毕业论文.doc_第2页
第2页 / 共26页
动物集群运动行为模型系列之五-毕业论文.doc_第3页
第3页 / 共26页
动物集群运动行为模型系列之五-毕业论文.doc_第4页
第4页 / 共26页
动物集群运动行为模型系列之五-毕业论文.doc_第5页
第5页 / 共26页
点击查看更多>>
资源描述

《动物集群运动行为模型系列之五-毕业论文.doc》由会员分享,可在线阅读,更多相关《动物集群运动行为模型系列之五-毕业论文.doc(26页珍藏版)》请在金锄头文库上搜索。

1、动物集群运动行为模型动物集群运动模型摘要本文主要模拟了鱼群的集群运动、鱼群躲避捕食者追捕的运动情况以及鸟群觅食运动的模拟,以此研究动物个体间的信息传递机制,同时也是对群体智能的初步探索。针对问题一,需要我们给出对鱼群集群运动的模型,并编写程序将运动模拟出来,对此我们建立了Boid模型,根据模型给出的准则以及算法,我们通过matlab编程,在忽略阻力等因素下分别模拟出在平面以及空间鱼群的运动,并得出密度必须大于一定值时,鱼群才能最终达到同步。鱼群的整个集群运动从刚开始的随机产生的各个个体的不均匀无规则分布到逐渐的聚拢成群再到最后的一致方向的前进。针对问题二,我们在问题一的模型的基础上给出了鱼群躲

2、避捕食者的模型,制定了鱼个体的适度逃离区域和加速逃离区域,分析捕食者与鱼个体的关系,给出进一步的模型,通过编写程序得到模拟的结果,得到了对鱼群躲避捕食者的运动的合理的动态模拟,并且给出了模型的改进方向。针对问题三,我们更加倾向于研究鸟群的觅食行为,因此我们将问题改成鸟群的觅食模拟,将鸟群的觅食行为转化为求最优解的问题,这正好与问题中提到了有一部分个体掌握食物源位置信息相对应。针对问题,我们建立了粒子群优化模型,通过PSO算法,通过鸟群寻找食物的最短路径的最优解的问题的分析,我们利用优化算法来模拟了鸟群在山间的觅食行为,得到了鸟群可以绕过我们设定的障碍物(山峰)到达食物点。关键字:动物集群运动

3、Boid模型 PSO算法 鸟群觅食一、问题重述在动物界,大量集结成群进行移动或者觅食的例子并不少见,这种现象在食草动物、鸟、鱼和昆虫中都存在。这些动物群在运动过程中具有很明显的特征:群中的个体聚集性很强,运动方向、速度具有一致性。通过数学模型来模拟动物群的集群运动行为以及探索动物群中的信息传递机制一直是仿生学领域的一项重要内容。通过观察附件中给出的图片和视频资料,或者在网上搜索相关资料观察,思考动物集群运动的机理,建立数学模型刻画动物集群运动、躲避威胁等行为,例如,可以考虑以下问题的分析建模:1. 建立数学模型模拟动物的集群运动。 2. 建立数学模型刻画鱼群躲避黑鳍礁鲨鱼的运动行为。3. 假定

4、动物群中有一部分个体是信息丰富者(如掌握食物源位置信息,掌握迁徙路线信息),请建模分析它们对于群运动行为的影响,解释群运动方向决策如何达成。建议与说明:1.在上述问题的讨论中,如果能适时分析动物群中的信息传递机制无疑是更好的。2.如果对问题2和问题3之外的其他集群运动行为更感兴趣,也可将这两个问题替换为你所感兴趣的问题来讨论。3.建模过程中的数据资料可以在网上查询或者自行合理设定。若果感到在三维空间讨论问题太复杂,可以先在二维空间讨论,再推广至三维空间。4.最好能对你所做的机理分析模型给出计算机仿真方法以便于实际情况对比评价。二、模型假设1.忽略障碍、阻力以及其它无关次要因素对于集群运动的影响

5、2.问题一鱼群中每个个体运动的速度都是恒定一样的3.鱼群集群运动的模拟中不考虑障碍物的存在4.忽略其它种群对本文所研究种群的影响5.不考虑集群中个体的体积,都按粒子处理三、符号说明 鱼群的总数 集群中每个个体的位置矢量 集群中每个个体的速度矢量 集群中每个个体运动的速度 排斥区域的半径 一致区域的半径 吸引区域的半径 惯性权重 粒子数 空间维数 最小速度 最大速度 粒子的位置矢量 捕食者的位置矢量 个体在时刻的预期方向、 学习因子(加速因子)、 均匀分布在(0,1)之间的随机数 在第次迭代时粒子的位置表示 在第次迭代时粒子的速度表示 个体极值 全局极值四、问题分析本问题是一个动物集群运动的模型

6、问题,动物的集群运动包括很多,其中有觅食、追尾、躲避捕食者等等运动,问题一需要我们考虑动物集群的运动模型,也就是鱼群的游弋、鸟群的飞翔等行为,是不需要考虑觅食、追尾等行为活动的,我们通过建立Boid模型进行鱼群集群运动的模拟。问题二需要我们给出鱼群躲避捕食者的运动模拟,要解决问题,那就需要我们在问题一模型的基础上给出鱼的逃逸模式,然后对逃逸运动进行模拟。问题三是需要我们模拟集群运动中存在领导者时的集群运动的模拟,可以运用和问题一一样的思路,但是我们对于鸟群的觅食行为更感兴趣,所以我们转而对鸟群觅食进行建模,我们选择PSO算法,通过模型求最优解的过程对鸟群觅食行为进行模拟,从而建立起了比较合适的

7、模型。针对这些问题,我们主要的工作是首先建立合适的模型,通过我们建立的模型,根据模型的算法,我们可以编写程序得到对集群运动的模拟。五、模型的建立与求解5.1鱼群集群运动的模拟5.1.1模型的建立我们根据问题一的要求,通过查阅资料得出了Boid模型可以解决类似的问题,这里我们就选用Boid模型作为此文的模型。Boid群模型包括三个简单的指导规则,它们描述了一个单一的“Boid”如何基于位置和邻近个体的速度进行分离、内聚和排序活动的。模型的三个规则(Reynolds聚结规则)如下:(1) 群中心定位:试图与邻近的群个体保持接近;(2) 避免障碍:避免与邻近的群个体发生冲突;(3) 速度匹配:试图与

8、邻近的群个体速度匹配;设系统有个个体组成,它们的位置和速度矢量分别为、,每个个体在三维空间中按照恒定的速度运动,为个体在时刻的预期方向。在每一步,每个个体可以感知到三个不重叠的区域中其他个体的位置和角度,这些信息用于计算,这三个区域分别为:排斥区域,一致区域,吸引区域,也称为Three-circle模型,其模型的三个区域如图(图1)所示:图1 Boid模型的三个区域示意图,zor为排斥区域,zoo为一致区域,zoa为吸引区域;为视野盲区,取值范围为个体的运动规则为:首先,每个个体尽量与排斥区域(以该个体为中心,以为半径的球)中的其他个体保持最小距离,并记其中的个体数为,则个体的预期方向按照下面

9、的方式调整其中。其次,如果,则个体的预期方向受“一致区域”(以个体位中心,处于和之间的球形区域,除去该个体后面的角度为的盲区)及“吸引区域”(以个体位中心,处于和之间的球形区域,除去该个体后面的角度为的盲区)中的个体的影响,记相应区域中的邻居个数分别为、,则可定义、如下:如果,则;同样,如果,则;如果两者都不为0,则定义如果经过上面的运算后所得到的,或者在三个区域中都没有个体,则。设旋转速率为,即每一时步个体所能转过的最大角度为,如果与之间的角度差小于,则,否则,个体向期望的方向旋转角度,这样就得到了个体下一步的运动方向。5.1.2模型的求解根据模型,我们利用matlab编程,得到二维空间(平

10、面)和三维空间(立体)的鱼群运动的模拟。5.1.2.1平面鱼群运动的模拟程序见附录1。我们取了个体为100,个体的旋转速率为0.5,得到了运动的模拟动画。下面我们截取了整个动态模拟过程中的3幅图。图2 第63时步时动态截图图3 第95时步时动态截图图4第104时步时动态截图5.1.2.2空间鱼群运动的模拟程序见附录2。我们取了个体为100,个体的旋转速率为0.5,得到了运动的模拟动画。下面我们截取了整个动态模拟过程中的3幅图。图5个体初始时刻的状态截图图6个体开始聚集收拢的截图 图7个体一致向一个方向运动截图从上面的各个图中,我们可以看出,鱼群的整个集群运动从刚开始的随机产生的各个个体的不均匀

11、无规则分布到逐渐的聚拢成群再到最后的一致方向的前进。整个模拟过程是比较合理的,比较符合实际,由于论文上无法显示动态的图,所以我们采取了截图的方式。从我们的模拟中,我们还发现,取不同的密度,得到的模拟结果是不一样的,在高密度的情景下,我们得出鱼群在经过有限的运动时间后,会最终达到同步,即运动方向达到一致。而且只有在密度大于一定范围时系统才能最终达到一致同步,随着个体密度的减小,我们可以推测存在一个临界密度,只有在大于临界密度的时候系统才能最终达到同步。密度越大,越容易达到同步。密度约小,鱼群只能形成多个小规模的鱼群,无法形成整个鱼群运动一致。取不同的旋转速率时,所得到的模拟动画也不一样。通过输入

12、不同的旋转速率,我们得出结论:旋转速率越大,鱼群总是在原位置附近徘徊,无法达到一致同步的趋势;旋转速率较小时,能够达到最终的一致同步,即使不能达到一致同步,也能以小规模的集群同步运动。5.2鱼群躲避捕食者的运动的模拟5.2.1模型的建立在问题一的模型的基础上,为考虑有外来捕食者的情况下群集的应急机制,设计了如下的粒子个体应急措施。如下图所示图8 捕食者模型示意图 粒子个体的应急区域分为两个层次:适度逃离区和加速逃离区。图阴影部分即为加速逃离区,内圆与外圆间的环形部分是适度逃离区。图下半部分显示了捕食者分别位于两个区域时,粒子个体的受力大小和方向。为简化模型,规定加速逃离区同原模型的排斥区重合。

13、当有捕食者进入到粒子个体的加速逃离区时,“逃跑”就是个体的最高策略,个体会沿捕食者与个体所在的直线告诉逃离捕食者,速度的大小同捕食者和个体间的距离存在一定的函数关系,此时个体将不考虑吸引、排斥异己方向同步等的作用。当有捕食者位于粒子个体的适度逃离区时,个体会受到捕食者与个体所在直线远离捕食者方向的作用,同时还将受到吸引、排斥以及方向同步等的作用。因此,个体受到的实际作用是两者作用的叠加。还应指出,当捕食者位于粒子个体的适度逃离区时,个体会加大方向同步区域的大小,期望尽快与其他粒子的方向保持同步。粒子的逃离速度公式如下:(1) (2) 图9捕食者与粒子距离同逃离速度(1)与同步区域(2)的函数关

14、系 其中是加速逃离区半径的大小,与排斥区域半径大小一样,即;是适度逃离区的半径大小,与吸引区域半径一样,即;是正常情况下同步区域半径大小,是此半径的上界(不超过)。当捕食者位于粒子的加速逃离区时,粒子的实际速度就是其逃离速度,当捕食者位于粒子的适度逃离区时,粒子的实际速度是其逃离速度与在吸引、排斥以及方向同步等的作用下的速度的合成。5.2.2模型的求解 通过matlab编程,我们得出了对鱼群逃逸的运动的模拟(程序见附录3)。截图如下:图10鱼群躲避捕食者的运动模拟截图图11鱼群躲避捕食者的运动模拟截图图12鱼群躲避捕食者的运动模拟截图(绿色圆圈为捕食者,红色叉为鱼)结论:我们通过对鱼群躲避捕食者的模型建立,然后通过matlab编程得到了对鱼群运动的模拟,总的可以看出鱼群的逃逸运动。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号