光学基础知识

上传人:cn****1 文档编号:559809256 上传时间:2023-06-19 格式:DOCX 页数:12 大小:496.33KB
返回 下载 相关 举报
光学基础知识_第1页
第1页 / 共12页
光学基础知识_第2页
第2页 / 共12页
光学基础知识_第3页
第3页 / 共12页
光学基础知识_第4页
第4页 / 共12页
光学基础知识_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《光学基础知识》由会员分享,可在线阅读,更多相关《光学基础知识(12页珍藏版)》请在金锄头文库上搜索。

1、光学基础知识可见光谱只是所有电磁波谱中的一小部分,人眼可感受到可见光的波长为 400 nm(紫色)700 nm(红色)。红、绿、蓝被称为三原色(RGB)。红色、绿色、蓝色比例的变化可以产生出 多种颜色,三者等量的混合可以再现白色。补色的概念:从白色中减去颜色A所形成的颜色,称之为颜色A的补色 (compleme ntary color)。白色-红色red=青色cyan白色-绿色green=洋红magenta白色-蓝色blue=黄色yellow白色-红色-绿色-蓝色=黑色补色的特点:当使用某个补色滤镜时,该补色对应的原色会被过滤掉。原色以及所对应补色的名称:红色(Red) 蓝色(Blue)洋红色

2、(Magenta)颜色再现有两种方式:原色加法:三原色全部参与叠加形成白色,任意其中两种原色相加形成不参 与合成的颜色的补色。原色减法:三补色全部参与叠加形成黑色,任意其中两种补色相加形成不参 与合成的颜色的原色。原色加法比较简单,由原色叠加而形成其他颜色,但是应用较少;而原色减 法是从白色中减掉相应原色而形成其他颜色,就是用补色来叠加形成其他颜色, 应用的场合比较多。光的直线传播定律:光在均匀介质中沿直线传播。费马定律:当一束光线在真空或空气中传播时,由介质1投射到与介质2 的分界面上时,在一般情况下将分解成两束光线:反射(reflectio n)光线和折射 (refractio n)光线。

3、反射定律:反射角等于入射角。i = r镜面表面亮度取决于视点,观察角度不同,表面亮度也不同。今反射漫反射一个理想的漫射面将入射光线在各个方向做均匀反射,其亮度与视点无关, 是个常量。折射定律:n1 sin i = n2 sin r任何介质相对于真空的折射率,称为该介质的绝对折射率,简称折射率 (Index of refraction)。公式中n1和n2分别表示两种介质的折射率。光的折射是由于光在不同介质的传播速度不同而引起的,取决于两种不同介 质的性质和光的波长。一种介质的绝对折射率为:n = c/v (c是真空中光的速度,v为该介质 中光的速度)可以看出:在折射率较大的介质中,光的速度比较低

4、;在折射率较小的介质 中,光的速度比较高。光线的衍射:在光的传播过程中,当光线遇到障碍物时,它将偏离直线传播,这 就是所谓光的衍射。由于光的波长很短,在日常生活中很难察觉出衍射现象。衍射不仅使物体的几何阴影失去清晰的轮廓,在边缘还会出现一系列明暗相 间的亮纹。直射光莪衍射光蜻I水面上可见的lu射现象11UIJ:,t 光阑光的强度分布焦点(focus)与光轴平行的光线射入凸透镜时,理想的镜头应该是所有的光线聚集在一点 后,再以锥状的扩散开来,这个聚集所有光线的一点,就叫做焦点。弥散圆(circle of confusion)在焦点前后,光线开始聚集和扩散,点的影象变成模糊的,形成一个扩大的 圆,

5、这个圆就叫做弥散圆。不同的厂家、不同的胶片面积有不同的容许弥散圆(permissible circle of con fusio n)直径的数值定义。一般常用的是:画幅24mm x 36mm6cm x 9cm4 x 5弥散圆直径0.035mm0.0817mm0.146mm人的肉眼所感受到的影象与放大倍率及观看距离有很大的关系,35mm照 相镜头的容许弥散圆,大约是底片对角线长度的1/10001/1500左右。前提 是画面放大为5x7英寸的照片,观察距离为2530cm。景深(depth of field)在焦点前后各有一个容许弥散圆,呈现在底片面的影象模糊度,都在容许弥 散圆的限定范围内。这两个

6、弥散圆之间的距离就叫景深,即:在被摄主体(对焦 点)前后,其影像仍然有一段清晰范围的,就是景深。景深随镜头的焦距、光圈值、拍摄距离而变化。对于固定焦距和拍摄距离, 使用光圈越小,景深越大。容许弥散圆直径f镜头焦距F镜头的拍摄光圈值L对焦距离L1前景深L2后景深L景深以持照相机拍摄者为基准,从焦点到近处容许弥散圆的的距离叫前景深,从 焦点到远方容许弥散圆的距离叫后景深。景深的计算前景深AL1 =(F&L2)/ (f2 + F6L)(1)后景深从2 =(F&L2)/ (f2 - F6L)(2)景深AL =AI2 + AL2 =(2f2FSL2)/ (f4 - F2&2L2)从公式(1)和(2)可以

7、看出,后景深 前景深。由景深计算公式可以看出,景深与镜头使用光圈、镜头焦距、拍摄距离以及 对像质的要求(表现为对容许弥散圆的大小)有关。镜头光圈越大,景深越小;镜头焦距越长,景深越小;焦距越短,景深越大; 拍摄距离越近,景深越小。200/2.8对焦在5m时,f/2.8的景深200/2.8+2X=400/5.6 对焦在 5m 时,f/5.6 的景深0.035mm0.035mmf200mmf400mmF2.8F5.6L5000mmL5000mmL160mmL130mmL262mmL231mmL122mmL61mm4.94m5.062m,景深很浅4.472.531m色散(Dispersion):光学

8、材料的折射率不但与材料本身的物理性质有关,还与 光线的波长有关。同一种光学材料,波长越短、折射率越高。具体讲,同一种光 学玻璃,绿光比红光折射率高,而蓝光比绿光折射率高。一般用ne (材料对绿 色的e光的折射率)表示材料的折射率,用阿贝数ve=(ne-1) /(nF-nc)表 示材料的相对色散,阿贝数越高,色散越小。式中,F是红光,e是绿光,c是 蓝光。色差(Chromatic aberration):从几何光学原理讲,镜头等效于一个单片凸 透镜。凸透镜的焦距,与镜面两边曲率和制造镜片材料的折射率有关。由于光学 材料都有色散,对于同一个镜片,红光焦距略微长一点,蓝光焦距略为短一点, 这就叫做色

9、差。轴向色差(Axial chromatic aberration):指的是光轴上的位置,因波长 不同产生不同颜色有不同焦点的现象。如上图,红色光线的焦点比蓝色光线的焦 点更远离镜片。矫正一般是采用不同折射率/色散率的镜片来进行组合,使它们 的色差相互抵消。典型的是采用一个正的冕牌透镜与一个负的火石透镜组合,会 聚的冕牌透镜具有低折射率和小的色散,而发散的火石透镜具有高折射率和更大 的色散。倍率色差(Chromatic differe nee of mag ni ficatio n):指像的周围因光线 波长的差异,所引起的映像倍率之改变。这是一种轴外像差,对像质的劣化随焦 距(视场角)增大而加

10、剧,并且不会随光圈缩小而减少。有效矫正办法是采用异 常/超低色散的光学玻璃。轴向色差涉及到成像的焦点距离,引起色彩松散或光斑(flare);而倍率色 差别则涉及到成像的大小,在画面周围引起色彩错开,形成扩散的彩色条纹,如 镶边(fri ngi ng)现象。色差不仅影响彩色胶片上成像的色彩再现,也会减低黑白 胶片上成像的解像力。消色差:利用不同折射率、不同色差的玻璃组合,可以消除色差。例如,利用低 折射率、低色散玻璃做凸透镜,利用高折射率、高色散玻璃做凹透镜,前者(凸 透镜)屈光度要大一些,后者(凹透镜)屈光度要小一些,然后将两者胶合在一 起,仍然等效于一个凸透镜。对于较长波长的光线,由于凹透镜

11、材料色散大,所 以折射率比中间波长较小,凸透镜起的作用大,双胶合镜长波端焦距偏长。对于 较长波短的光线,由于凹透镜材料色散大,所以折射率较大,凹透镜起的发散作 用大,双胶合镜短波端焦距也偏长。最后的结论是,这样的双胶合镜中间波长焦 距较短、长波和短波光线焦距较长。设计时合理的选择镜片球面曲率、双胶合镜 的材料,可以使蓝光、红光焦距恰好相等,这就基本消除了色差。剩余色差对于 广角到中焦镜头来说,已经很小了。二级光谱:未消色差的镜头随着光线波长增加,焦距单调上升,色差很大。而消 色差镜头焦距随波长先减小后增加,色差很小。消色差镜头的剩余色差就叫做二 级光谱。镜头焦距越长,消色差越不能满足要求,二级

12、光谱越不可忽视。复消色差(APOchromatic):可以想象,如果某种材料随波长变化折射率的 数值可以任意控制,那么我们就能够设计出完全没有色差的镜头。可惜,材料的 色散是不能任意控制的。我们退一步设想,如果能够将可见光波段分为蓝-绿、 绿-红两个区间,而这两个区间能够分别施用消色差技术,二级光谱就能够基本 消除。但是,经过计算证明:如果对绿光与红光消色差,那么蓝光色差就会变得 很大;如果对蓝光与绿光消色差,那么红光色差就会变得很大。理论计算为复消 色差找到了途径,如果制造凸透镜的低折射率材料蓝光对绿光的部分相对色差恰 好与制造凹透镜的高折射率材料的部分相对色差相同,那么实现蓝光与红光的消

13、色差之后,绿光的色差恰好消除。这个理论指出了实现复消色差的正确途径,就 是寻找一种特殊的光学材料,它的蓝光对红光的相对色散应当很低、而蓝光对绿 光的部分相对色散应当很高且与某种高色散材料相同。萤石就是这样一种特殊材 料,它的色散非常低邙阿贝数高达95.3),而部分相对色散与许多光学玻璃接 近。荧石(即氟化钙,分子式CaF2)折射率比较低(ND=1.4339),微溶 于水(0.0016g/100g水),可加工性与化学稳定性较差,但是由于它优异的 消色差性能,使它成为一种珍贵的光学材料。萤石最早仅用于显微镜中,自从萤 石人工结晶工艺实现以后,高级超长焦镜头中萤石几乎是不可或缺的材料。由于 萤石价格

14、昂贵、加工困难,各光学公司一直不遗余力的寻找萤石的代用品,氟冕 玻璃就是其中一种。各公司所谓AD玻璃、ED玻璃、UD玻璃,往往就是这一 类代用品。低色散玻璃:低色散玻璃产生的色差很小、因而消色差之后剩余色差也比较小, 对镜头质量改善非常有益。近些年来,一系列高折射率低色散玻璃(主要是镧系 稀土玻璃)的采用,镜头质量进一步提高。高折射率玻璃实现同样的屈光度镜片 球面曲率较小,因而带来的各种像差尤其是球面像差减小,使得镜头体积减小、 结构简化、质量提高。但是,它毕竟不能实现复消色差,无法消除二级光谱,不 能与APO技术相提并论。球面像差(spherical aberration):由于透镜表面是球

15、面而引起,由光轴上 同一物点发出的光线,通过镜头后,在像场空间上不同的点会聚,从而发生了结 像位置的移动。它的产生是由于离轴距离不同的光线在镜片表面形成的入射角不同而造成的,当平行的光线由镜面的边缘(远轴光线)通过时,它的焦点位置比较 靠近镜片;而由镜片的中央通过的光线(近轴光线),它的焦点位置则比较远离镜 片,这种沿着光轴的焦点错间开的量,称为纵向球面像差。这种像差会在通过镜头中心部分的近轴光线所结成的影像周围,形成由通过 镜头边缘部分的光线所产生的光斑(光晕),使所形成的影象变成模糊不清,画面 整体好象蒙上一层纱似的,变成缺少鲜锐度的灰蒙蒙的影像。这个光斑的半径称 为横向球面像差。球面像差在镜头光圈全开或者接近全开的时候表现最为明显,口径愈大的镜 头,这种倾向愈明显。通过缩小光圈可适当消除球面像差,但如果像差过大,缩 小光圈可能会引起聚焦平面(就是焦点)的移动。非球面镜片(Aspherical Lens):修改镜片表面的曲率,让近轴光线与远轴光 线所形

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号