2020-2021备战中考数学二轮-平行四边形-专项培优含详细答案.doc

上传人:s9****2 文档编号:558095153 上传时间:2024-04-10 格式:DOC 页数:29 大小:1.41MB
返回 下载 相关 举报
2020-2021备战中考数学二轮-平行四边形-专项培优含详细答案.doc_第1页
第1页 / 共29页
2020-2021备战中考数学二轮-平行四边形-专项培优含详细答案.doc_第2页
第2页 / 共29页
2020-2021备战中考数学二轮-平行四边形-专项培优含详细答案.doc_第3页
第3页 / 共29页
2020-2021备战中考数学二轮-平行四边形-专项培优含详细答案.doc_第4页
第4页 / 共29页
2020-2021备战中考数学二轮-平行四边形-专项培优含详细答案.doc_第5页
第5页 / 共29页
点击查看更多>>
资源描述

《2020-2021备战中考数学二轮-平行四边形-专项培优含详细答案.doc》由会员分享,可在线阅读,更多相关《2020-2021备战中考数学二轮-平行四边形-专项培优含详细答案.doc(29页珍藏版)》请在金锄头文库上搜索。

1、2020-2021备战中考数学二轮 平行四边形 专项培优含详细答案一、平行四边形1问题发现:()如图,点为平行四边形内一点,请过点画一条直线,使其同时平分平行四边形的面积和周长问题探究:()如图,在平面直角坐标系中,矩形的边、分别在轴、轴正半轴上,点 坐标为已知点为矩形外一点,请过点画一条同时平分矩形面积和周长的直线,说明理由并求出直线,说明理由并求出直线被矩形截得线段的长度问题解决:()如图,在平面直角坐标系中,矩形的边、分别在轴、轴正半轴上,轴,轴,且,点为五边形内一点请问:是否存在过点的直线,分别与边与交于点、,且同时平分五边形的面积和周长?若存在,请求出点和点的坐标:若不存在,请说明理

2、由 【答案】(1)作图见解析;(2),;(3),【解析】试题分析:(1)连接AC、BD交于点O,作直线PO,直线PO将平行四边形ABCD的面积和周长分别相等的两部分(2)连接AC,BD交于点,过、P点的直线将矩形ABCD的面积和周长分为分别相等的两部分(3)存在,直线平分五边形面积、周长试题解析:()作图如下:(),设,交轴于,交于,()存在,直线平分五边形面积、周长在直线上,连交、于点、,设,直线,联立,得,2如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发以每秒1个单位的速度运动其中,点M沿OA向终点A运动,点N沿BC

3、向终点C运动过点M作MPOA,交AC于P,连接NP,已知动点运动了x秒(1)P点的坐标为多少(用含x的代数式表示);(2)试求NPC面积S的表达式,并求出面积S的最大值及相应的x值;(3)当x为何值时,NPC是一个等腰三角形?简要说明理由【答案】(1)P点坐标为(x,3x)(2)S的最大值为,此时x=2(3)x=,或x=,或x=【解析】试题分析:(1)求P点的坐标,也就是求OM和PM的长,已知了OM的长为x,关键是求出PM的长,方法不唯一,可通过PMOC得出的对应成比例线段来求;也可延长MP交BC于Q,先在直角三角形CPQ中根据CQ的长和ACB的正切值求出PQ的长,然后根据PM=ABPQ来求出

4、PM的长得出OM和PM的长,即可求出P点的坐标(2)可按(1)中的方法经求出PQ的长,而CN的长可根据CN=BCBN来求得,因此根据三角形的面积计算公式即可得出S,x的函数关系式(3)本题要分类讨论:当CP=CN时,可在直角三角形CPQ中,用CQ的长即x和ABC的余弦值求出CP的表达式,然后联立CN的表达式即可求出x的值;当CP=PN时,那么CQ=QN,先在直角三角形CPQ中求出CQ的长,然后根据QN=CNCQ求出QN的表达式,根据题设的等量条件即可得出x的值当CN=PN时,先求出QP和QN的长,然后在直角三角形PNQ中,用勾股定理求出PN的长,联立CN的表达式即可求出x的值试题解析:(1)过

5、点P作PQBC于点Q,有题意可得:PQAB,CQPCBA,解得:QP=x,PM=3x,由题意可知,C(0,3),M(x,0),N(4x,3),P点坐标为(x,3x)(2)设NPC的面积为S,在NPC中,NC=4x,NC边上的高为,其中,0x4S=(4x)x=(x2+4x)=(x2)2+S的最大值为,此时x=2(3)延长MP交CB于Q,则有PQBC若NP=CP,PQBC,NQ=CQ=x3x=4,x=若CP=CN,则CN=4x,PQ=x,CP=x,4x=x,x=;若CN=NP,则CN=4xPQ=x,NQ=42x,在RtPNQ中,PN2=NQ2+PQ2,(4x)2=(42x)2+(x)2,x=综上所

6、述,x=,或x=,或x=考点:二次函数综合题3如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长【答案】(1)证明见解析;(2)【解析】分析:(1)根据平行四边形ABCD的性质,判定BOEDOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在RtADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.详解:(1)证明:四边形ABCD是矩形,O是BD的中点,A=90,AD=BC=4,ABDC

7、,OB=OD,OBE=ODF,在BOE和DOF中, BOEDOF(ASA),EO=FO,四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,BDEF,设BE=x,则DE=x,AE=6-x,在RtADE中,DE2=AD2+AE2,x2=42+(6-x)2,解得:x= ,BD= =2,OB=BD=,BDEF,EO=,EF=2EO=点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键 4已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF(1)

8、求证:DOEBOF(2)当DOE等于多少度时,四边形BFDE为菱形?请说明理由【答案】(1)证明见解析;(2)当DOE=90时,四边形BFED为菱形,理由见解析.【解析】试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出DOEBOF(ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案试题解析:(1)在ABCD中,O为对角线BD的中点,BO=DO,EDB=FBO,在EOD和FOB中,DOEBOF(ASA);(2)当DOE=90时,四边形BFDE为菱形,理由:DOEBOF,OE=OF,又O

9、B=OD,四边形EBFD是平行四边形,EOD=90,EFBD,四边形BFDE为菱形考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定5如图,在RtABC中,B=90,AC=60cm,A=60,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动设点D、E运动的时间是t秒(0t15)过点D作DFBC于点F,连接DE,EF(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,DEF为直角三角形?请说明理由【答

10、案】(1)见解析;(2)能,t=10;(3)t=或12.【解析】【分析】(1)利用t表示出CD以及AE的长,然后在直角CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)DEF为直角三角形,分EDF=90和DEF=90两种情况讨论.【详解】解:(1)证明:在RtABC中,C=90A=30,AB=AC=60=30cm,CD=4t,AE=2t,又在RtCDF中,C=30,DF=CD=2t,DF=AE;(2)能,DFAB,DF=AE,四边形AEFD是平行四边形,当AD=AE时,四边形AEFD

11、是菱形,即604t=2t,解得:t=10,当t=10时,AEFD是菱形;(3)若DEF为直角三角形,有两种情况:如图1,EDF=90,DEBC,则AD=2AE,即604t=22t,解得:t=,如图2,DEF=90,DEAC,则AE=2AD,即,解得:t=12,综上所述,当t=或12时,DEF为直角三角形.6已知RtABD中,边AB=OB=1,ABO=90问题探究:(1)以AB为边,在RtABO的右边作正方形ABC,如图(1),则点O与点D的距离为 (2)以AB为边,在RtABO的右边作等边三角形ABC,如图(2),求点O与点C的距离问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在

12、射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由【答案】(1)、;(2)、;(3)、.【解析】【分析】试题分析:(1)、如图1中,连接OD,在RtODC中,根据OD=计算即可(2)、如图2中,作CEOB于E,CFAB于F,连接OC在RtOCE中,根据OC=计算即可(3)、如图3中,当OFDE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM分别求出MH、OM、FH即可解决问题【详解】试题解析:(1)、如图1中,连接OD,四边形ABCD是正方形, AB=BC=CD=AD=1,C=

13、90 在RtODC中,C=90,OC=2,CD=1,OD=(2)、如图2中,作CEOB于E,CFAB于F,连接OCFBE=E=CFB=90, 四边形BECF是矩形, BF=CF=,CF=BE=,在RtOCE中,OC=(3)、如图3中,当OFDE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DMFD=FE=DE=1,OFDE, DH=HE,OD=OE,DOH=DOE=22.5, OM=DM,MOD=MDO=22.5, DMH=MDH=45, DH=HM=, DM=OM=,FH=, OF=OM+MH+FH=OF的最大值为考点:四边形综合题7如图,在菱形ABCD中,AB=

14、4,BAD=120,AEF为正三角形,E、F在菱形的边BC,CD上(1)证明:BE=CF(2)当点E,F分别在边BC,CD上移动时(AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值(3)在(2)的情况下,请探究CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值【答案】(1)见解析;(2);(3)见解析【解析】试题分析:(1)先求证AB=AC,进而求证ABC、ACD为等边三角形,得4=60,AC=AB进而求证ABEACF,即可求得BE=CF;(2)根据ABEACF可得SABE=SACF,故根据S四边形AECF=SAEC+SACF=SAEC+SABE=SABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业/管理/HR > 企业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号