11反射式速调管的工作特性和波导管的工作状态.doc

上传人:新** 文档编号:557868865 上传时间:2023-02-01 格式:DOC 页数:8 大小:457.01KB
返回 下载 相关 举报
11反射式速调管的工作特性和波导管的工作状态.doc_第1页
第1页 / 共8页
11反射式速调管的工作特性和波导管的工作状态.doc_第2页
第2页 / 共8页
11反射式速调管的工作特性和波导管的工作状态.doc_第3页
第3页 / 共8页
11反射式速调管的工作特性和波导管的工作状态.doc_第4页
第4页 / 共8页
11反射式速调管的工作特性和波导管的工作状态.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《11反射式速调管的工作特性和波导管的工作状态.doc》由会员分享,可在线阅读,更多相关《11反射式速调管的工作特性和波导管的工作状态.doc(8页珍藏版)》请在金锄头文库上搜索。

1、微波实验一:反射式速调管的工作特性和波导管的工作状态鲁东大学近代物理实验室 2008/04/14一、微波基础知识: 微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波的不同。从图1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者。与无线电波相比,微波有下述几个主要特点图1 电磁波的分类 1波长短(1m 1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面

2、和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用。 2频率高:微波的电磁振荡周期(10-9一10-12s)很短,已经和电子管中电子在电极间的飞越时间(约10-9s)可以比拟,甚至还小,因此普通电子管不能再用作微波器件(振荡器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。另外,微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级,在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻,电容,电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导

3、元件、谐振腔等)来代替。 3微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量。 4量子特性:在微波波段,电磁波每个量子的能量范围大约是10-610-3eV,而许多原子和分子发射和吸收的电磁波的波长也正好处在微波波段内。人们利用这一特点来研究分子和原子的结构,发展了微波波谱学和量子电子学等尖端学科,并研制了低噪音的量子放大器和准确的分子钟,原子钟。(北京大华无线电仪器厂) 5能穿透电离层:微波可以畅通无阻地穿越地球上空的电离层,为卫星通讯,宇宙通讯和射电天文学的研究和发展提供了广阔的前途。综上所述微波具有自己的特点,不论

4、在处理问题时运用的概念和方法上,还是在实际应用的微波系统的原理和结构上,都与普通无线电不同。微波实验是近代物理实验的重要组成部分。二、反射式速调管的工作特性和波导管的工作状态 反射式速调管是一种微波电子管,一般用作实验室的小功率微波振荡器,或者用作微波接收机的本机振荡器。反射式速调管是实验室使用的微波信号源的核心部分。熟悉速调管的原理、结构、工作特性和使用方法,是正确使用微波信号源的基础。 微波的振荡周期与电子的渡越时间可以比拟,甚至还要小,使得普通电子管在微波波段不能使用;而反射式速调管正是利用微波这一特点而设计成的微波振荡管。测量速调管中电子的渡越时间,可以加深对速调管工作原理的理解。 微

5、波在波导管中的传播情况,可以归结为三种状态:匹配状态、驻波状态和混波状态。观测这三种状态,有助于熟悉匹配、反射和驻波等概念。 波导中波传播的相速度大于光速C。通过测量波导波长和频率的方法来决定相速度、群速度和光速,不仅提供一种测量光速的简便方法(有四位有效数字),而且可以进一步明晰微波在波导管中传播的物理图像。本实验的目的要求是:1. 熟悉反射式速调管的结构、特性和使用方法及波导管的三种工作状态,并掌握微波的三种基本测量;2. 测量反射式速调管中电子渡越时间及波导管中波传播的相速度、群速度和光速。一、原理 速调管的工作特性l速调管的结构、特性和使用方法 反射式速调管主要由阴极、谐振腔和反射极三

6、部分组成(原理结构图参看图015和图016)。从阴极飞出的电子被谐振腔上的正电压加速,穿过栅网。在反射极反向电压的作用下,运动电子返回栅网。当满足一定条件时,在谐振腔中产生微波振荡,微波能量由同轴探针输出。反射式速调管 K-27常用于3 Cm波段,图中给出了其结构图。图中调谐螺钉的作用是通过改变谐振腔两个栅网的距离来改变调谐频率。图 015反射式速调管的结构原理图 图 016反射式速调管 K-27 的结构图左图017反射式速调管K-27的特性曲线左图018电子调谐范围(阳极电压 V0=300V,波长=3.2Cm) 反射式速调管的特性曲线(在一定的阳极电压情况下,输出功率P以及振荡频率f与反射极

7、电压VR的关系曲线)如图017所示,由图可以看出下列特性:具有分立的振荡模;改变反射极电压会引起微波功率和频率的变化;存在最佳振荡模;各个振荡模的中心频率相同等等。可归纳为:(l)反射式速调管并不是在任意的反射极电压数值都能发生振荡,只有在某些特定值才能振荡。每一个有振荡输出功率的区域,叫做速调管的振荡模,n表示振荡模的序号。(2)对于每一个振荡模,当反射极电压VR变化时,速调管的输出功率P和振荡频率f都随之变化。在振荡换中心的反射极电压上,输出功率最大,而且输出功率和振荡频率随反射极电压的变化也比较缓慢。(3)输出功率最大的振荡模,叫做最佳振荡模(图017中n3的振荡模)。为了使速调管具有最

8、大的输出功率和稳定的工作频率,通常使速调管工作在最佳振荡模的中心反射极电压上。(4)各个振荡模的中心频率相同,(为什么?想想振荡模的中心频率决定于什么?)通常称为速调管的工作频率。调整反射式速调管的振荡频率有两种方法:“电子调谐”和“机械调谐”。用改变反射级电压来实现振荡频率变化的方法,称为“电子调谐”(可使频率小范围内变化,一般f0.005f0)。一个振荡模的半功率点所对应的频率宽度,称为该振荡模的“电子调谐范围”(图018中的),半功率点所对应的频率宽度的比值称为“平均电子调谐率”。要使速调管的频率有较大的变化,可以通过慢慢转动调谐螺钉(图016)改变谐振腔的大小来实现,这种方法称为“机械

9、调谐”。反射式速调管的工作状态一般有三种:()连续振荡状态:就是我们在上面讨论过的工作状态,亦即在反射板上不加任何调制电压,调节反射极电压使反射式速调管处在最佳工作状态(在最佳振荡模的最大输出功率处,具有较好的功率和频率稳定性)。()方波(或矩形脉冲)调幅状态:图019表示反射式速调管在方波调幅时的特性。为了获得纯粹的调幅振荡,避免引起附加的调频,调制电压必须为严格的方波,而且要选择合适的反射极电压(直流工作点),使调制波形的一个半周处在两个振荡模的不振荡区域内,而另一个半周处在振荡模的功率最大点。在实验中是这样做的:先使速调管处在连续振荡的最佳位置,当从连续状态变到调幅状态时,调节方波的幅度

10、使得输出功率为连续状态的一半,此时的调制幅度为合适。图019 反射式速调管在方波调幅时的特性 图020 反射式速调管在锯齿调频时的特性当速调管处在调幅工作状态时,在微波测量线路中配合使用测量放大器,可以提高测量灵敏度。()锯齿波(或正弦波)调频状态:图020表示反射式调速管在锯齿波调频时的特性。速调管反射极电压的直流工作点选择在某一振荡模的功率最大点,亦即选在频率变化曲线的当中,当锯齿波的幅度比振荡模的宽度小得多时,可以得到近似直线性的调频信号输出,而附加的调幅很小。当速调管处在调频工作状态时,可用示波器观测微波系统的动态特性。反射式速调管的工作原理图 0 21 反射式速调管内电子的运动轨迹

11、为什么反射式速调管会产生微波振荡?为什么只有在某些特定的反射极电压数值时才有输出功率(存在着分立的振荡模)?为什么能够对反射式速调管进行电子调谐和机械调谐?,为了回答这些问题,这里简单介绍反射式速调管的工作原理。 要研究振荡的产生,就必须分析速调管中电子的运动过程和能量转换机构。 参看图021,从阴极飞出的电子被谐振腔上的正电压所加速,这时直流电源的能量转化为真空中运动电子的动能。问题就在于:怎样把运动电子的动能变成微波振荡的能量?电子在加速电场的作用下飞入谐振腔,在腔中激起感应电流脉冲,使谐振腔中发生了振荡,因而在两个栅网间产生了一个微弱的微波电场。穿过栅网的电子受到微波电场的作用,可能受到

12、加速或减速,速度发生变化,亦即电子受到速度调制。在正半周内电子被微波电场加速,微波电场把能量传给电子;在负半周内电子被微波电场减速,微波电场从电子取得能量。因为电子是均匀连续地从阴极发出的,所以在正半周内电子取得的能量等于负半周内电子失去的能量。总起来说,微波电场净得的能量为零,微波振荡不发生。为了产生振荡,必须在加速的半周内,使电子完全不通过间隙,或者通过的电子数比减速的半周时为少。那么,关键就在于:(1)怎样把密度均匀的电子流变成疏密相间的电子流(电子的密度调制)?(2)怎样使密集的电子团在通过栅网时正好受到微波电场的减速?上述的两点要求是通过反射极来实现的。为了解释电子团的形成,让我们来

13、研究四个在不同时刻飞过栅网的电子的运动并画出它们运动的空间时间图(图021):电子1通过栅网时,微波电场=0,速度不变,进入反射空间,到达反射平面(假想的)后返转;电子2通过栅网时,微波电场=max,受到加速,越过反射平面后返转;电子3通过栅网时速度不变,进入反射空间到达反射平面后返转;电子4通过栅网时,微波电场=max,受到减速,未到达反射平面就返转。电子3成为群聚中心,它的运动轨迹如图021中的粗线所示。在反射空间,距离S0、谐振腔电压V0和反射极电压VR合适的情况下,就有可能做到:围绕着群聚中心电子的密集电子团回到栅网时受到微波电场的最大减速,这样微波电场从运动电子挣得的能量最大。如果把

14、电子从离开栅网至回到栅网所需的时间叫做渡越时间(以表示),则与群聚中心电子的渡越时间0与微波振荡周期T满足下式:0=(n+3/4)T, n=1,2,3, (019)时,电子流给出的功率最大,这一条件相当于振荡的位相条件。显然,渡越时间0与电子的电量e,和质量m、反射空间的距离S。、反射极电压VR以及谐振腔电压V0等有关,它们满足下式: (020)群聚中心电子在反射空间中的运动,就好像在重力场中铅直上抛小球的运动一样。感兴趣的话可推导一下上式。利用式(019)、(020),并注意到T=1/f (f 位微波频率),我们有上式表明:只有V。和为某些值时才能产生振荡,而且对于一定的n和V0,改变VR会

15、引起 f的改变,因此反射式速调管具有如图 017所示的工作特性曲线,从而也就不难解释本节开始时提出的那些问题。值得指出的是,由式(019)可以看出微波振荡周期与电子渡越时间可以比拟甚至还要小,这就是我们在本单元引言中讲到的微波特点之一。反射式速调管之所以能产生振荡,正是巧妙地利用了这一特点。满足了位相条件,只是说明振荡可能产生而不是一定会产生。如果直流的电子流太小,由群聚中心电子团所能传递给微波电场的功率不足以克服电路和负载中的损耗时,振荡就不发生。因此,要使振荡发生,还需要第二个条件,即要求直流电子流大于某一最小电流(起始电流),也即ii0。这一条件相当于振荡的幅值条件,起始电流i0与电路及外负载有关,并与(n 34)成比例。 式(019)、(020)就是振荡的位相条件和幅值条件,当这两个条件都满足时,微波振荡常常会发生。 使用速调管振荡器时要注意爱护仪器,熟悉仪器面板上各个开关、旋钮的作用,并采取正确的使用方法(注意施加电压的步骤和各极电压的极限值)。2电子渡越时间的测定(选做) 测量速调管中

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号