微生物的生长与生存因子.doc

上传人:桔**** 文档编号:557764484 上传时间:2023-08-02 格式:DOC 页数:18 大小:87.01KB
返回 下载 相关 举报
微生物的生长与生存因子.doc_第1页
第1页 / 共18页
微生物的生长与生存因子.doc_第2页
第2页 / 共18页
微生物的生长与生存因子.doc_第3页
第3页 / 共18页
微生物的生长与生存因子.doc_第4页
第4页 / 共18页
微生物的生长与生存因子.doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

《微生物的生长与生存因子.doc》由会员分享,可在线阅读,更多相关《微生物的生长与生存因子.doc(18页珍藏版)》请在金锄头文库上搜索。

1、第五章 微生物的生长与生存因子一、目的要求要求学生掌握微生物生长的研究方法,了解调控微生物生长繁殖的因素。二、教学内容1微生物纯培养的生长2测定微生物生长的方法3微生物的生长规律4影响微生物生长的因素三、重点内容微生物的生长测定与微生物生长的规律四、教学方法采用多媒体教学微生物在适宜的条件下,不断地吸收营养物质并按照自己的代谢方式进行代谢活动,如同化作用大于异化作用,则细胞质的量不断增加,体积得以加大,于是表现为生长。所谓生长就是指生物个体由小到大的增长,即表现为细胞组分与结构在量方面的增加;繁殖是指生物个体数目的增加。但是在单细胞微生物中,生长繁殖的速度很快,而且两者始终交替进行,个体生长与

2、繁殖的界限难以划清,因此实际上常以群体生长作为衡量微生物生长的指标。群体生长的实质是包含着个体细胞生长与繁殖交替进行的过程。第一节 微生物纯培养的获得微生物在自然界中不仅分布很广,而且都是混杂地生活在一起。要想研究或利用某一种微生物,必须把它众混杂的微生物类群分离出来,以得到只含有一种微生物的培养。微生物学中将在实验条件下,从一个细胞或同种细胞群繁殖得到的后代称为纯培养。纯培养的获得有下列几种方法。一、平板划线分离法有接种环以菌操作沾取少许待分离的材料,在无菌平板表面进行平行划线、扇形划线或其他形式的连续划线,微生物细胞数量将随着划线次数的增加而减少,并逐步分散开来,如果划线适宜的话,微生物能

3、一一分散,经培养后,可在平板表面得到单菌落。二、稀释倒平板法先将待分离的材料用无菌水作一系列的稀释(如110、1100、11000、110000),然后分别取不同稀释液少许,与已溶化并冷却至45左右的琼脂培养基混合,摇匀后,倾入灭过菌的培养皿中,待琼脂凝固后,制成可能含菌的琼脂平板,保温培养一定时间即可出出菌落。如果稀释得当,在平板表面或琼脂培养基中就可出现分散的单个菌落,这个菌落可能就是由一个细菌细胞繁殖形成的。随后挑取该单个菌落,或重复以上操作数次,便可得到纯培养。三、单孢子或单细胞分离法采取显微分离法从混杂群体中直接分离单个细胞或单个个体进行培养以获得纯培养,称为单细胞(单孢子)分离法。

4、单细胞他离法的难度与细胞或个体的大小成反比,较大的微生物如藻类、原生动物较容易,个体较小的细菌则较难。在显微镜下使用单孢子分离器进行机械操作,挑取单孢子或单细胞进行培养。也可以采用特制的毛细管在载玻片的琼脂涂层上选取单孢子并切割下来,然后移到合适的培养基进行培养。单细胞分离法对操作技术有比较高的要求,多限于高度专业化的科学研究中采用。四、利用选择性培养基分离法各种微生物对不同的化学试剂、染料、抗生素等具有不同的抵抗能力,利用这些特性可配制合适某种微生物而限制其它微生物生长的选择培养基,用它来培养微生物以获得纯培养。另外,还可以将样品预处理,消除不希望分离到的微生物。如加温杀死营养菌体而保留芽孢

5、,过滤去除丝状菌体而保留单孢子。微生物纯培养分离方法的比较分离方法应用范围平皿划线法方法简便,多用于分离细菌稀释倒平皿法即可定性,又可定量,用途广泛单细胞挑取法局限于高度专业化的科学研究利用选择培养基法适用于分离某些生理类型较特殊的第二节 微生物生长的测定微生物生物情况可以通过测定单位时间里微生物数量或生物量的变化来评价。通过微生物生长的测定可以客观地评价培养条件、营养物质等对微生物生长的影响,或评价不同的抗菌物质对微生物产生抑制(或杀死)作用的效果,或客观反应微生物的生长规律。因此微生物生长的测量在理论上和实践上有着重要的意义。微生物生长的测量有计数、重量和生理指标等方法。1计数法此法通常用

6、来测定样品中所含细菌、孢子、酵母菌等单细胞微生物的数量。计数法又分为直接计数法和间接计数两类。 (1)直接计数 这类方法是利用血球计数板,在显微镜下计算一定容积里样品中微生物的数量。此法的缺点不能区分死菌与活菌。计数板是一块特制的载玻片,上面有一个特定的面积1mm2和高o.1mm的计数室,在1mm2的面积里又被刻划成25个(或16个)中格,每个中格进一步划分成16个(或25个)小格,但计数室都是由400个小格组成。将稀释的样品滴在计数板上,盖上盖玻片,然后在显微镜下计算4-5个中格的细菌数,并求出每个小格所含细菌的平均数,再按下面公式求出每毫升样品所含的细菌数。每毫升原液所含细菌数每小格平均细

7、菌数400 l0 000稀释倍数 (2)间接计数法 此法又称活菌计数法,其原理是每个活细菌在适宜的培养基和良好的生长条件下可以通过生长形成菌落。将待测样品经一系列10倍稀释,然后选择三个稀释度的菌液,分别取0.2ml放入无菌平皿,再倒入适量的已熔化并冷至45左右的培养基,与菌液混匀,冷却、待凝固后,放入适宜温度的培养箱或温室培养,长出菌落后,计数,按下面公式计算出原菌液的含菌数: 每毫升原菌液活菌数同一稀释度三个以上重复平皿 菌落平均数稀释倍数5 此法还可以将稀释的菌液取0.2m1加到已制备好的平板上,然后用无菌涂棒将菌液涂布整个平板表面,放入适宜温度下培养,计算菌落数,再按上公式计算出每毫升

8、原菌液的所含活菌总数。 此法可因操作不熟练造成污染,或因培养基温度过高损伤细胞等原因造成结果不稳定。尽管如此,由于该方法能测出样品中微量的菌数,仍是教学、科研和生产上常用的一种测定细菌数的有效方法。土壤、水、牛奶、食品和其他材料中所含细菌、酵母、芽抱与抱子等的数量均可用此法测定。但不适于测定样品中丝状体微生物,例如放线菌或丝状真菌或丝状蓝细菌等的营养体等。 除上述两种常用的计数方法外,还有膜过滤法、比浊法。膜过滤法是当样品中菌数很低时,可以将一定体积的湖水、海水或饮用水等样品通过膜过滤器。然后将滤膜干燥、染色,并经处理使膜透明,再在显微镜下计算膜上(或一定面积中)的细菌数;比浊法原理是在一定范

9、围内,菌的悬液中细胞浓度与混浊度成正比,即与光密度成正比,菌越多,光密度越大。因此可以借助于分光光度计,在一定波长下,测定菌悬液的光密度,以光密度(OD)表示菌量。实验测量时一定要控制在菌浓度与光密度成正比的线性范围内,否则不准确。微生物计数法,发展迅速,现有多种多样的快速、简易、自动化的仪器和装置等方法。 2重量法 此法的原理是根据每个细胞有一定的重量而设计的。它可以用于单细胞、多细胞以及丝状体微生物生长的测定。将一定体积的样品通过离心或过滤将菌体分离出来,经洗涤,再离心后直接称重,求出湿重,如果是丝状体微生物,过滤后用滤纸吸去菌丝之间的自由水,再称重求出湿重。不论是细菌样品还是丝状菌样品,

10、可以将它们放在已知重量的平皿或烧杯内,于105烘干至恒重,取出放入干燥器内冷却,再称量,求出微生物干重。 如果要测定固体培养基上生长的放线菌或丝状真菌,可先加热至50,使琼脂熔化,过滤得菌丝体,再用50的生理盐水洗涤菌丝,然后按上述方法求出菌丝体的湿重或干重。 除了干重、湿重反映细胞物质重量外,还可以通过测定细胞中蛋白质或DNA的含量反映细胞物质的量。蛋白质是细胞的主要成分,含量也比较稳定,其中氮是蛋白质的重要组成元素。从一定体积的样品中分离出细胞,洗涤后,按凯氏定氮法测出总氮量。蛋白质含氮量为16,细菌中蛋白质含量占细菌固形物的50一80,一般以65为代表,有些细菌则只占13一14,这种变化

11、是由菌龄和培养条件不同所产生的。因此总含氮量与蛋白质总量之间的关系可按下列公式计算: 蛋白质总量含氮量6.25 核酸DNA是微生物的重要遗传物质,每个细菌的DNA含量相当恒定,平均为8.410-5ng。因此从一定体积的细菌悬液中所含的细菌中提取DNA,求得DNA含量,再计算出这一定体积的细菌悬液所含的细菌总数。 3生理指标法 对于一些非溶液的样品,要测定微生物数量除了用活菌计数法外,还可以用生理指标测定法进行测定。生理指标包括微生物的呼吸强度、耗氧量、酶活性、生物热等。这是根据微生物在生长过程中伴随出现的这些指标,样品中微生物数量多或生长旺盛,这些指标愈明显,因此可以借助特定的仪器如瓦勃氏呼吸

12、仪、微量量热计等设备来测定相应的指标。这类测定方法主要用于科学研究,分析微生物生理活性等。第三节 微生物的生长规律一、细菌群体生长规律细菌接种到均匀的液体培养基后,当细菌以二分裂法繁殖,分裂后的子细胞都具有生活能力。在不补充营养物质或移去培养物,保持整个培养液体积不变条件下,以时间为横坐标,以菌数为纵坐标,根据不同培养时间时细菌数量的变化,可以作出一条反映细菌在整个培养期间菌数变化规律的曲线,这种曲线称为生长曲线称为生长曲线(growth curve)。一条典型的生长曲线至少可以分为迟缓期、对数期、稳定期和衰亡期等四个生长时期。1迟缓期(1ag phase) 又称延滞期、适应期。细菌接种到新鲜

13、培养基而处于一个新的生长环境,因此在一段时间里并不马上分裂,细菌的数量维持恒定,或增加很少。此时胞内的RNA、蛋白质等物质含量有所增加,相对地此时的细胞体最大,说明细菌并不是处于完全静止的状态。产生迟缓期的原因,认为是微生物接种到一个新的环境,暂时缺乏足够的能量和必需的生长因子,“种子”老化(即处于非对数生长期)或未充分活化,接种时造成的损伤等。在工业发酵和科研中迟缓期会增加生产周期而产生不利的影响,但是迟缓期无疑也是必需的,因为细胞分裂之前,细胞各成分的复制与装配等也需要时间,因此应该采取一定的措施:通过遗传学方法改变种的遗传特性使迟缓期缩短;利用对数生长期的细胞作为“种子”; 尽量使接种前

14、后所使用的培养基组成不要相差太大;适当扩大接种量等方式缩短迟缓期,克服不良的影响。2对数生长期(log phase)又称指数生长期(exponential Phase)。细菌经过迟缓期进入对数生长期,并以最大的速率生长和分裂,导致细菌数量呈对数增加,而且细菌内各成分按比例有规律地增加,此时期内的细菌生长是平衡生长。对数生长期细菌的代谢活性、酶活性高而稳定,大小比较一致,生活力强,因而它广泛地在生产上用作“种子”和在科研上作为理想的实验材料。3稳定生长期(stationary phase)由于营养物质消耗,代谢产物积累和pH等环境变化,逐步不适宜于细菌生长,导致生长速率降低直至零(即细菌分裂增加

15、的数量等于细菌死亡数量),结束对数生长期,进入稳定生长期。稳定生长期的话细菌数最高并维持稳定。如果及时采取措施,补充营养物质或取走代谢产物或改善培养条件,如对好氧菌进行通气、搅拌或振荡等可以延长稳定生长期,获得更多的菌体物质或代谢产物。4衰亡期(decline或death Phase)营养物质耗尽和有毒代谢产物的大量积累,细菌死亡速率逐步增加和活细菌逐步减少,标志进入衰亡期。该时期细菌代谢活性降低,细菌衰老并出现自溶。该时期死亡的细菌以对数方式增加,但在衰亡期的后期,由于部分细菌产生抗性也会使细菌死亡的速率降低。此外,不同的微生物,甚至同一种微生物对不同物质的利用能力是不同的。有的物质可直接被利用(例如葡萄糖或NH4+等);有的需要经过一定的适应期后才能获得利用能力(例如乳糖或NO3-等)。前者通常称为速效碳源(或氮源),后者称为迟效碳源(或氮源)。当培养基中同时含有这两类碳源(或氮源)时,微生物在生长过程中会产生二次生长现象。二、同步培养微生物个体生长是微生物群体生长的基础。但群体中每个个体可能分别是处于个体生长的不同阶段,因而它们的生长、生理与代谢活性等特性不一致,出现生长与分裂不同

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号