第三章碳水化合物.doc

上传人:cl****1 文档编号:556869084 上传时间:2023-09-18 格式:DOC 页数:13 大小:193.50KB
返回 下载 相关 举报
第三章碳水化合物.doc_第1页
第1页 / 共13页
第三章碳水化合物.doc_第2页
第2页 / 共13页
第三章碳水化合物.doc_第3页
第3页 / 共13页
第三章碳水化合物.doc_第4页
第4页 / 共13页
第三章碳水化合物.doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

《第三章碳水化合物.doc》由会员分享,可在线阅读,更多相关《第三章碳水化合物.doc(13页珍藏版)》请在金锄头文库上搜索。

1、第三章:碳 水 化 合 物l 存在于所有的谷物、蔬菜、水果及可食用的植物中;提供膳食热量;提供食品的质构、口感和甜味;是具有Cx(H2O)y组成特点的有机化合物;包括单糖、低聚糖和多糖;自然界最丰富的碳水化合物是纤维素。 1.单糖:不能再被水解的糖单位,如葡萄糖、果糖2.低聚糖(寡糖):由2-10个单糖分子失水缩合而成的,根据水解后生成单糖分子的数目,可分为二糖、三糖、四糖,如蔗糖、麦芽糖3.多糖:由很多个单糖分子失水缩合而成的高分子化合物,其水解后可生成多个单糖分子。可分为均多糖和杂多糖,如淀粉、果胶 单糖的链式结构 自然界存在的一些重要单糖l 在这些开链式结构中,编号为最高位次的手性碳原子

2、(C-5)上连接的羟基排布在碳链的右边时,称为D-构型糖,反之称为L-构型糖。天然存在的单糖大多以D-构型糖存在,L-糖很少,人体一般只能利用D-型单糖。差向异构体:在化学组成相同的几种单糖中,多个手性碳原子中只有一个手性碳原子的构型不同,其他手性碳原子的构型完全相同,这样的旋光异构体称为差向异构体。例如:D葡萄糖与D甘露糖,它们的第二个碳原子的构型相反,叫2差向异构体 糖苷:单糖环状结构中的半缩醛(或半缩酮)羟基较分子内的其他羟基活泼,可与醇或酚等含羟基化合物反应,脱水形成的缩醛(或缩酮)物质。S-糖苷:糖与硫醇(RSH)作用生成硫糖苷(S-糖苷),糖基与糖苷配基之间有一硫原子。如硫葡萄糖苷

3、是芥末子和辣根的组分(见教材P62236硫葡萄糖苷结构)生氰糖苷:生氰糖苷多数易水解,通常由酶催化进行。在含有生氰糖苷的植物中都存在能水解生氰糖苷的酶。l 生氰糖苷本身不呈现毒性,但水解产生氢氰酸(HCN)后会引起动物中毒。氢氰酸的主要毒作用在于:CN能迅速与氧化型细胞色素氧化酶的三价铁(Fe3+)结合,生成非常稳定的高铁细胞色素氧化酶,使其不能转变为具有二价铁(Fe2+)的还原型细胞色素氧化酶,致使细胞色素氧化酶失去传递电子、激活分子氧的功能,使组织细胞不能利用氧,形成细胞内窒息,导致细胞中毒性缺氧症。l 生氰糖苷的去毒处理:氢氰酸的沸点低(25.726.5)加热易挥发。采用水浸泡及加热,充

4、分煮熟后充分洗涤。糖苷的性质:氧糖苷的糖苷键在中性或碱性条件下稳定,在酸性条件或酶作用下易水解产生还原糖。N-糖苷一般不如O-糖苷稳定,更易发生水解。3.1.3低聚糖(寡糖)l 如果糖苷配基是另一分子单糖,这个缩醛(或缩酮)就是一个双糖l 更多的单糖分子以糖苷键相联,便形成三糖、四糖-直至多糖l 二糖为重要低聚糖,可分为还原性和非还原性二糖还原性二糖l 由一分子单糖的半缩醛羟基与另一分子单糖的醇羟基失水而成的。l 形成的二糖分子中一单糖单位仍保留有半缩醛基可以开环成链式,l 具有单糖的一般性质:有变旋光现象,具有还原性。食品中重要的还原性二糖(麦芽糖、乳糖、纤维二糖)l 麦芽糖:由两分子-D-

5、吡喃葡萄糖通过-1.4-苷键连接而成双糖。具有潜在的游离醛基,是一种还原糖。淀粉水解后得到的二糖(酶法),廉价温和的甜味剂。甜度为蔗糖的1/3,能被酵母发酵。l 乳糖:由一分子-D-半乳糖和一分子-D-吡喃葡萄糖通过-1,4-苷键连接而成的双糖l 乳糖不耐症:如果人体小肠中缺乏乳糖酶,乳糖保留在小肠肠腔内,由于渗透压的作用,乳糖有将液体引向肠腔的趋势,产生腹胀和痉挛;乳糖若从小肠进入大肠(结肠)内,由厌氧微生物发酵生成乳酸和其它短链脂肪酸,这些产物大量积累则引起腹泻。 食品中重要的非还原性二糖(蔗糖、海藻糖)l 非还原性二糖由一分子单糖的半缩醛羟基与另一分子单糖的半缩醛羟基失水而成,形成的二糖

6、分子中不再存在半缩醛羟基,无变旋现象也无还原性。l 蔗糖由-D-吡喃葡萄糖基和-D-呋喃果糖基头碰头相连(还原端与还原端相连)构成l 糖苷键:、-1.2-苷键,葡萄糖和果糖互为苷元,是非还原性双糖。l 蔗糖水解转化作用:蔗糖比旋光度为+66.5,在稀酸或蔗糖酶作用下,水解得到葡萄糖和果糖的等量混合物,其比旋光度为-19.8。生成等摩尔葡萄糖和果糖的混合产物称为转化糖。l 蜜蜂体内含蔗糖酶,故蜂蜜中存在大量转化糖。人体小肠中也有蔗糖酶,可将摄入的蔗糖水解成葡萄糖和果糖。l 蔗糖和其他一些低相对分子质量碳水化合物(单糖双糖及某此低聚糖)具有极大吸湿性和溶解性,可形成高浓缩的高渗透压溶液,对微生物有

7、抑制效应海藻糖(酵母糖):作为贮存形式的糖类,广泛存在于海藻、昆虫、酵母和真菌体内,是各种昆虫血液中的主要血糖。l 由两个葡萄糖残基以半缩醛羟基相结合,组成相应的三种海藻糖,分别称:海藻糖(,)、异海藻糖(,)、新海藻糖(,),其中葡萄糖残基均是吡喃糖环。l 通过-1,1-糖苷键结合而成的二糖l 其分子结构中不再存在半缩醛羟基,所以是一种非还原性糖食品中的三糖和四糖l 棉籽糖不能被酵母发酵,经蔗糖酶或a-半乳糖苷酶催化水解生成可发酵性糖。 l 甜度仅为蔗糖的2040%,人体不能消化吸收l 吸湿性为所有低聚糖中最低,甚至在相对湿度90%的环境中也不吸水结块水苏糖:蔗糖、棉籽糖、水苏糖是大豆低聚糖

8、的主要成分。(详见教材P43)碳水化合物的化学性质1.变旋现象:糖刚溶解于水时,其比旋光度是处于变化中的,但到一定时间后就稳定在一恒定的旋光度上,此种现象称为变旋现象。这是由于糖从链状分子转变成环状分子引起的。酸和碱可作为催化剂催化变旋作用,所有还原糖都有变旋作用。2.差向异构化(烯醇化和异构化作用)当碱浓度超过还原糖变旋作用所需浓度时,糖便发生差向异构化(碱催化糖结构开环成链式结构)以上反应实质是酮糖在稀碱作用下,发生醛糖和酮糖的互变重排3.氧化反应:单糖都是还原糖,都能发生氧化;醛糖在酶的作用下也可发生氧化。D-葡萄糖在葡萄糖氧化酶的作用下易氧化成D-葡萄糖酸,并形成内酯。4.还原反应:在

9、催化剂或酶的作用下,羰基还原成羟基,糖还原生成相应的糖醇5.非酶褐变褐变:食品在加工、贮藏过程中颜色发生变化而趋向深色的现象食品发生的褐变反应分为两大类:氧化或酶促褐变:酚类物质在多酚氧化酶催化下的反应。 非氧化或非酶促褐变:美拉德反应与焦糖反应。美拉德反应:Maillard反应的定义:美拉德反应又称羰氨反应,指羰基与氨基经缩合、聚合生成类黑色素的反应。由于这类反应得到的是棕色产物且不需酶催化,也称为非酶褐变反应。. Maillard反应过程:美拉德反应机理2,3-烯醇化反应产生的二羰基化合物易与氨基酸发生反应l 即氨基酸发生了脱羧、脱氨且自身转化成少一个碳原子醛类的降解反应。l 斯特勒克降解

10、反应是引起必需氨基酸营养价值损失的重要途径。l 而SO2和亚硫酸盐对该反应几乎无抑制作用。l 没有明显褐变的热加工食品也不能保证营养无损失,因在褐变色素形成前,由于发生斯特勒克降解反应而使氨基酸降解,营养受到损失。斯特勒克降解反应的产物可进一步产生一些挥发性风昧物质:.影响Maillard反应的因素l 糖类与氨基酸l 还原糖含量与褐变成正比;五羰糖六羰糖,单糖双糖。食品中的其它羰基类化合物也能导致褐变反应发生。l 能参加Maillard反应的氨基化合物有胺类、氨基酸、蛋白质、肽类。 反应活性:胺类氨基酸;碱性氨基酸中性或酸性氨基酸; 氨基处于位或碳链末端位的氨基酸氨基处于位的氨基酸。 含S-S

11、、SH的氨基酸不易褐变,有吲哚、苯环的氨基酸易褐变。l 温度:随T,Maillard反应速度。温度相差10度,褐变速度相差3-5倍。30以上褐变较快,20以下褐变较慢。l PH:受胺类亲核反应活性的制约,碱性条件有利于Maillard反应进行。最适PH7.89.2;PH4 -9范围内,随PH,褐变程度;PH3有效防止褐变,因强酸性条件使氨基酸质子化,阻止葡基胺的形成。降低PH是控制褐变的有效方法之一。l 水分:食品在中等水分含量时(10%-15%)最易发生褐变反应。相对湿度为0%或100%时或将水分活度降至0.2时可抑制褐变反应发生。l 金属离子:Cu与Fe促进褐变, Fe() Fe()。但C

12、a2+可与氨基酸结合成不溶性化合物,有协同SO2抑制褐变的作用。.Maillard反应对食品品质的影响l 不利影响:营养损失,特别是必需氨基酸损失严重:以含有游离-氨基的赖氨酸最为敏感,碱性氨基酸L-精氨酸和L-组氨酸因侧链上有相对呈碱性的氮原子存在,所以比其他氨基酸对降解反应更为敏感。l 蛋白质肽链上氨基如果参与了非酶褐变反应,其溶解度会降低。l 产生某些致癌物质Maillard反应产生了大量的中间体和终产物。研究表明:终产物中存在神经毒素、致癌物质丙烯酰胺。l 有利影响 产生深颜色及强烈的香气和风味,赋予食品特殊气味和风味。 食品加工中某些情况下美拉德反应和斯特勒克反应是需宜的,期望的,如

13、牛奶巧克力风味、糖果风味、金黄色色泽等。而在另一些情况下则是非需宜的,不期望的:如营养(氨基酸)损失、有毒、致突变物质产生。.抑制Maillard反应的措施1.除去食品中能参与褐变反应的底物,这种底物通常是糖类。如: 薯片的原料土豆可选氨基酸、还原糖含量较少的品种;生产全蛋粉时在干燥前添加葡萄糖氧化酶可使D-葡萄糖降解。2.降低水分含量:美拉德反应一般在中等水分含量(10%-15%)时最易发生,完全干燥条件下难于发生。水分活度小于0.2或增大液体食品的稀释度可抑制反应发生。3.保持低PH值:PH对美拉德褐变有重要影响:PH 6时反应程度较弱(酸性条件使氨基质子化,阻葡基胺形成);随PH,褐变速

14、度加快;当PH7.8-9.2范围时,氨基氮含量交严重损失。常加酸(如柠檬酸、苹果酸)液浸泡苹果、蘑菇原料后再进行加工(罐头)以防变黑。4.降低加工温度:褐变反应受温度影响大,温差10度褐变速度相差3-5倍。一般在30以上褐变较快,20以下褐变较慢;10以下可较好地防褐变。5.亚硫酸盐处理: SO2和亚硫酸盐能抑制糠醛及其衍生物如5-羟甲基-2-呋喃甲醛等进一步与其他化合物缩合、聚合生成类黑精色素,被广泛用于各类食品抑制褐变。 但要注意, SO2或SO32-虽然能够抑制食品褐变,但它们不能防止参与美拉德反应的氨基酸的营养价值损失,因为在二氧化硫抑制褐变前,氨基酸已开始参与反应,并随之发生降解。另

15、外,斯特勒克降解反应是引起必需氨基酸营养价值损失的重要途径,而SO2或SO32-对该反应几乎无抑制作用。6.避免金属离子的不利影响 金属离子特别是铜和铁能促进褐变反应,且Fe3+比Fe2+ 的作用更强,但Ca2+可与氨基酸结合为不溶性化合物,有协同SO2抑制褐变的作用。例如:在马铃薯等多种食品中单独使用亚硫酸盐有迅速褐变的现象,但结合使用Cacl2以后可有效抑制褐变。红薯、马铃薯加工时应采用不锈钢刀具、器皿等。.Maillard反应在食品加工中的利用 在面包、饼干、糕点、咖啡、红茶、啤酒、酱油、肉类香精等生产中利用美拉德反应,通过控制原材料、温度及加工方法,可制备各种不同风味、香味的物质。控制食品发生Maillard褐变有三个方面的重要意义第一,褐变产生深颜色及强的香气和风味,对许多食品在品质上,特别是感官上可能是需宜的或非需宜的。例如花生、咖啡豆在焙烤过程中产生的褐变风味。第二、可防止营养成分损失,特别是必需氨基酸如赖氨酸的损失,需要避免发生褐变反应。这对于赖氨酸缺乏的食品如谷物类食品很重要。同样,大豆粉或大豆离析物与D-葡萄糖一起加热时,大豆蛋白质中的赖氨酸将会大量损失。谷物、豆类的焙烤食品

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号