上海初中数学知识点汇总1

上传人:re****.1 文档编号:550327389 上传时间:2023-03-31 格式:DOC 页数:12 大小:171.50KB
返回 下载 相关 举报
上海初中数学知识点汇总1_第1页
第1页 / 共12页
上海初中数学知识点汇总1_第2页
第2页 / 共12页
上海初中数学知识点汇总1_第3页
第3页 / 共12页
上海初中数学知识点汇总1_第4页
第4页 / 共12页
上海初中数学知识点汇总1_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《上海初中数学知识点汇总1》由会员分享,可在线阅读,更多相关《上海初中数学知识点汇总1(12页珍藏版)》请在金锄头文库上搜索。

1、上海初中数学知识点汇总第一章实数一、重要概念1. 数的分类及概念说明:“分类”的原则:1)相称(不重、不漏) 2)有标准2. 非负数:正实数及零的统称。(表为:x0)性质:若干个非负数的和为0,则每个非负担数均为0。3倒数: 定义及表示法 性质:1(a1).1中,a0.0a1时111时,11.积为1。4相反数: 定义及表示法 性质:0时,a及在数轴上的位置.和为0,商为-1。5数轴:定义(“三要素”) 作用:A.直观地比较实数的大小.明确体现绝对值意义.建立点及实数的一一对应关系。 6奇数、偶数、质数、合数(正整数自然数) 定义及表示: 奇数:21 偶数:2n(n为自然数) 7绝对值:定义(两

2、种): 代数定义: 几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。 a0,符号“”是“非负数”的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有“”出现,其关键一步是去掉“”符号。 二、 实数的运算1 运算法则(加、减、乘、除、乘方、开方)2 运算定律(五个加法乘法交换律、结合律;乘法对加法的分配律)3 运算顺序:A.高级运算到低级运算.(同级运算)从“左” 到“右”(如5 5).(有括号时)由“小”到“中”到“大”。三、 应用举例典型例题 1 已知:a、b、x在数轴上的位置如下图,求证:+ . 2.已知:2且0,(a0,b0),判断a、b的符号。 重点实

3、数的有关概念及性质,实数的运算第二章代数式一、重要概念1.代数式及有理式 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。 整式和分式统称为有理式。 2.整式和分式 含有加、减、乘、除、乘方运算的代数式叫做有理式。 没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。 有除法运算并且除式中含有字母的有理式叫做分式。3.单项式及多项式 没有加减运算的整式叫做单项式。(数字及字母的积包括单独的一个数或字母) 几个单项式的和,叫做多项式。 说明:根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。进行代数式分类时,是

4、以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如, , =x等。 4.系数及指数 区别及联系:从位置上看;从表示的意义上看 5.同类项及其合并 条件:字母相同;相同字母的指数相同 合并依据:乘法分配律 6.根式 表示方根的代数式叫做根式。 含有关于字母开方运算的代数式叫做无理式。 注意:从外形上判断;区别: 是根式,但不是无理式(是无理数)。 7.算术平方根 正数a的正的平方根( a0及“平方根”的区别); 算术平方根及绝对值 联系:都是非负数, =a 区别:a中,a为一切实数; 中,a为非负数。 8.同类二次根式、最简二次根式、分母有理化 化为最简二次根式

5、以后,被开方数相同的二次根式叫做同类二次根式。 满足条件:被开方数的因数是整数,因式是整式;被开方数中不含有开得尽方的因数或因式。 把分母中的根号划去叫做分母有理化。9.指数 ( 幂,乘方运算) a0时, 0;a0时, 0(n是偶数), 0(n是奇数) 零指数: =1(a0) 负整指数: =1/ (a0是正整数) 二、 运算定律、性质、法则1分式的加、减、乘、除、乘方、开方法则2分式的性质 基本性质: = (m0) 符号法则: 繁分式:定义;化简方法(两种)3整式运算法则(去括号、添括号法则) 4幂的运算性质: = ; = ; = ; = ; 技巧: 5乘法法则:单单;单多;多多。 6乘法公式

6、:(正、逆用) ()()= (ab) = 7除法法则:单单;多单。8因式分解:定义;方法:A.提公因式法.公式法.十字相乘法.分组分解法.求根公式法。9算术根的性质: ; ; (a00); (a00)(正用、逆用) 10根式运算法则:加法法则(合并同类二次根式);乘、除法法则;分母有理化:11科学记数法三、 数式综合运算重点代数式的有关概念及性质,代数式的运算第三章统计初步一、 重要概念1.总体:考察对象的全体。2.个体:总体中每一个考察对象。3.样本:从总体中抽出的一部分个体。4.样本容量:样本中个体的数目。 5.众数:一组数据中,出现次数最多的数据。6.中位数:将一组数据按大小依次排列,处

7、在最中间位置的一个数(或最中间位置的两个数据的平均数)二、 计算方法1.样本平均数: ;若 , , ,则 (a常数, , , 接近较整的常数a);加权平均数: ;平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。2样本方差: ;若 , , ,则 (a接近 、 、 的平均数的较“整”的常数);若 、 、 较“小”较“整”,则 ;样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。3样本标准差:重点样本平均数、样本方差、标准差第四章 直线形一、 直线、相交线、平行线1线

8、段、射线、直线三者的区别及联系 从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。2线段的中点及表示 3直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”) 4两点间的距离(三个距离:点-点;点-线;线-线) 5角(平角、周角、直角、锐角、钝角) 6互为余角、互为补角及表示方法 7角的平分线及其表示 8垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”) 9对顶角及性质 10平行线及判定及性质(互逆)(二者的区别及联系) 11常用定理:同平行于一条直线的两条直线平行(传递性);同垂直于一条直线的两条直线平行。 12定义、命题、命题的组成

9、13公理、定理 14逆命题 二、 三角形 1定义(包括内、外角) 2三角形的边角关系:角及角:内角和及推论;外角和;n边形内角和;n边形外角和。边及边:三角形两边之和大于第三边,两边之差小于第三边。角及边:在同一三角形中, 3三角形的主要线段 讨论:定义线的交点三角形的心性质 高线中线角平分线中垂线中位线 一般三角形特殊三角形:直角三角形、等腰三角形、等边三角形 4特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定及性质 5全等三角形 一般三角形全等的判定(、) 特殊三角形全等的判定:一般方法专用方法 6三角形的面积 一般计算公式性质:等底等高的三角形面积相等。 7重要辅助

10、线 中点配中点构成中位线;加倍中线;添加辅助平行线 8证明方法 直接证法:综合法、分析法 间接证法反证法:反设归谬结论 证线段相等、角相等常通过证三角形全等 证线段倍分关系:加倍法、折半法 证线段和差关系:延结法、截余法 证面积关系:将面积表示出来 三、 四边形1一般性质(角) 内角和:360 顺次连结各边中点得平行四边形。 推论1:顺次连结对角线相等的四边形各边中点得菱形。 推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。 外角和:360 2特殊四边形 研究它们的一般方法: 平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定 判定步骤:四边形平行四边形矩形正方形 菱形 对

11、角线的纽带作用: 3对称图形 轴对称(定义及性质);中心对称(定义及性质) 4有关定理:平行线等分线段定理及其推论1、2 三角形、梯形的中位线定理 平行线间的距离处处相等。(如,找下图中面积相等的三角形)5重要辅助线:常连结四边形的对角线;梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长及底边相交”转化为三角形。6作图:任意等分线段。 重点相交线及平行线、三角形、四边形的有关概念、判定、性质。第五章 方程组一、重要概念1方程、方程的解(根)、方程组的解、解方程(组) 2 分类: 二、 解方程的依据等式性质1 2 (c0) 三、 解法 1一元一次方程的解法:去分母去括号

12、移项合并同类项 系数化成1解。 2 元一次方程组的解法:基本思想:“消元”方法:代入法 加减法 四、 一元二次方程1定义: 只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程。一般形式:(a0)2解法:直接开平方法(注意特征) 配方法(注意步骤推倒求根公式) 公式法:求根公式 因式分解法(特征:左边=0)3根的判别式: 4根及系数顶的关系: 逆定理:若 ,则以为根的一元二次方程是: 。5常用等式:如果方程中只含分式和整式,且分母中含有未知数,那么这个方程是分式方程。五、 可化为一元二次方程的方程1分式方程 定义:如果方程中只含分式和整式,且分母中含有未知数,那么这个方程是分式方

13、程。基本思想:通过去分母把它转化为一个整式方程,再求解基本解法:去分母法换元法验根及方法2无理方程定义 基本思想:方程中含有根式,且被开方数是含有未知数的代数式的方程。基本解法:乘方法(注意技巧!)换元法验根及方法3简单的二元二次方程组 由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。六、 列方程(组)解应用题1. 概述列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是: 审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。 设元(未知数)。直接未知数间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。 用含未知数的代数式表示相关的量。 寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数及方程个数是相同的。 解方程及检验。 答案。 综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。2. 常用的相等关系

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 试题/考题 > 初中试题/考题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号