《《集合》教学设计.doc》由会员分享,可在线阅读,更多相关《《集合》教学设计.doc(22页珍藏版)》请在金锄头文库上搜索。
1、集合教学设计凯里一中数学组孙大敏一、教学内容本章的主要内容是集合的概念、表示方法和集合之间的关系与运算。本章共分两大节。第一大节,是集合与集合的表示方法。本节首先通过实例,引入集合与集合的元素的概念,接着给出了空集的含义。然后,学习了集合的两种表示方法(列举法和特征性质描述法)。第二大节,是集合之间的关系与运算。本节首先从观察集合与集合之间元素的关系开始,给出子集、真子集以及集合相等的概念,同时学习了用维恩(Venn)图表示集合。接着,学习了交集、并集以及全集、补集的初步知识。本章的最后安排了一篇介绍数学文化的阅读材料“聪明在于学习,天才由于积累自学成才的华罗庚”。安排这篇阅读材料的主要目的是
2、,培养学生的爱国主义和刻苦学习、勤奋钻研的精神。二、地位及作用集合语言是现代数学的基本语言。通过集合语言的学习,有利于学生简明准确地表达学习的数学内容。集合的初步知识是学生学习、掌握和使用数学语言的基础,是高中数学学习的出发点。三、教学目标 本章是将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性;帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行表达和交流的能力了解集合的含义,体会元素与集合的“属于”关系掌握某些数集的专用符号1理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用2理解集合之间包含与
3、相等的含义,能识别给定集合的子集培养学生分析、比较、归纳的逻辑思维能力.3能在具体情境中,了解全集与空集的含义4理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集培养学生从具体到抽象的思维能力5理解在给定集合中,一个子集的补集的含义,会求给定子集的补集6能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用四、教学内容及课时安排建议 本章教学时间约5课时 1.1.1 集合的概念 (约1课时) 1.1.2集合的表示方法 (约1课时) 1.2.1集合之间的关系 (约1课时) 1.2.2集合的运算 (约1课时) 集合复习课 (约1课时)五、教学重点及难点本章的重点是集合的特
4、征性质描述法及集合间的相互关系。只有掌握了集合的特征性质描述方法及集合间的相互关系,才有可能使学生简洁准确地表述数学对象和结构,更好地使用数学语言进行交流,进而培养学生运用集合的观点研究和处理数学问题的能力。本章的难点是用集合的特征性质描述法描述集合和补集的逻辑含义。学生从本章正式开始学习集合知识,集合包含了比较多的新概念,还有相应的新符号,有些概念、符号还容易混淆,这些因素都可能给学生的学习带来一定的困难。六、教学资源建议课本与教参;与教材相关的课件;与内容有关的数学发展史;信息技术手段。七、教学方法与学习指导建议教师指导与学生合作交流相结合,通过提出问题、观察实例,引导学生理解集合的概念,
5、分析、讨论、探究集合中元素与集合,集合与集合的关系及运算,从而熟练使用集合语言来表述数学对象。八、评价建议1重视对学生数学学习过程的评价 关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。2正确评价学生的数学基础知识和基本技能关注学生在本章及今后学习中,能否正确理解以及恰当运用集合语言。包括:正确掌握有关的术语和符号;使用集合语言表述数学问题;运用集合的观点研究、处理数学问题;针对不同的具体问题时,是否恰当地选择自然语言、图形语言、集合语言进行描述。教学案例1
6、.1.1集合的概念教学目标:(1)使学生初步理解集合的概念,知道常用数集的概念及其记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念教学方法:教师指导与学生合作、交流相结合的教学方法.教学过程:教学环节教学内容师生互动设计意图引入军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念集合,即是一些研究对象的总体.学生思考、交流设疑
7、激趣,导入课题讲授新课阅读教材,并思考下列问题:(1)有那些概念?(2)有那些符号?(3)集合中元素的特性是什么?(4)如何给集合分类?:1、集合的概念(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个对象叫做这个集合的元素.集合通常用大写的拉丁字母表示,如A、B、C、元素通常用小写的拉丁字母表示,如a、b、c、2、元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于A,记作aA(2)不属于:如果a不是集合A的元素,就说a不属于A,记作要
8、注意“”的方向,不能把aA颠倒过来写.3、集合中元素的特性(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.(2)互异性:集合中的元素一定是不同的.(3)无序性:集合中的元素没有固定的顺序.4、集合分类根据集合所含元素个属不同,可把集合分为如下几类:(1)把不含任何元素的集合叫做空集(2)含有有限个元素的集合叫做有限集(3)含有无穷个元素的集合叫做无限集 5、常用数集及其表示方法(1)非负整数集(自然数集):全体非负整数的集合.记作N(2)正整数集:非负整数集内排除0的集.记作N*或N+(3)整数集:全体整数的集合.记作Z(4)有理数集:全体有理数的集合.记作Q(5)实数集:
9、全体实数的集合.记作R注:(1)自然数集包括数0. (2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*教师提问,学生讨论交流,得出集合概念的要点,并弄清元素与集合之间的从属关系.通过实例,引导学生经历并体会集合概念形成过程.应用举例例1 下列各组对象能否构成一个集合:(1) 著名的数学家(2) 某校高一(2)班所有高个子的同学(3) 不超过10的非负数(4) 方程在实数范围内的解(5) 的近似值的全体例2 选择填空;(1)给出下面四个关系:R,0.7Q,00,0N,其中正确的个数是:( )个A4 B3 C2 D1(2
10、)下面有四个命题:若-a,则a 若a,b,则a+b的最小值是2集合N中最小元素是1 x2+4=4x的解集可表示为2,2.其中正确命题的个数是( ) A 0 B 1 C 2 D 3学生思考、交流,并得出结论.通过练习进一步理解集合有关概念、性质.课堂练习1、教材P4练习A B.2、下列各组对象能确定一个集合吗?(1)所有很大的实数 (2)好心的人 (3)1,2,2,3,4,53、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2_学生独立完成巩固概念归纳总结本节课学习了以下内容:1集合的有关概念:(集合、元素、属于、不属于)2集合元素的性质:确定性,互异性,无序性3常用数集的定义及
11、记法师生共同总结、交流、完善让学生进一步体会知识的形成、发展、完善过程.作业P9习题1-1B第3题1.1.2集合的表示方法教学目标:(1)掌握集合的表示方法.(2)能选择自然语言、集合语言描述不同的问题.教学重点、难点:用列举法、描述法表示一个集合.教学方法:采用实例归纳、自主探究、合作交流等方法.教学中通过列举例子,引导学生进行讨论和交流,并通过创设情境,让学生自主探索一些常见集合的特征性质.教学过程:教学环节教学内容师生互动设计意图引入1回忆集合的概念2集合中元素有那些性质?3空集、有限集和无限集的概念教师提问,学生回答通过复习回顾,为引入集合表示方法作铺垫.概念形成及深化集合的表示方法1
12、、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法.例如,24所有正约数构成的集合可以表示为1,2,3,4,6,8,12,24注:(1)大括号不能缺失.(2)有些集合种元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可如下表示:从1到100的所有整数组成的集合:1,2,3,100自然数集N:1,2,3,4,,n,(3)区分a与a:a表示一个集合,该集合只有一个元素.a表示这个集合的一个元素.(4)用列举法表示集合时不必考虑元素的前后次序.相同的元素不能出现两次.2、特征性质描述法:在集合I中,属于集合A的任意元素x都具有性质p(x),而不属于集合A的元素都不具有
13、性质p(x),则性质p(x)叫做集合A的一个特征性质,于是集合A可以表示如下:xI| p(x) 例如,不等式的解集可以表示为:或,所有直角三角形的集合可以表示为:注:(1)在不致混淆的情况下,也可以写成:直角三角形;大于104的实数 (2)注意区别:实数集,实数集.教师给出概念,学生讨论.加深学生对列举法、特征性质描述法的理解应用举例例1 用列举法表示下列集合:(1) 小于5的正奇数组成的集合;(2) 能被3整除而且大于4小于15的自然数组成的集合;(3) 从51到100的所有整数的集合;(4) 小于10的所有自然数组成的集合;(5) 方程的所有实数根组成的集合;(6)由120以内的所有质数组成的集合.例2 用描述法表示下列集合:(1) 由适合x2-x-20的所