《初二《四边形》复习资料.doc》由会员分享,可在线阅读,更多相关《初二《四边形》复习资料.doc(12页珍藏版)》请在金锄头文库上搜索。
1、课程解读一、学习目标:1. 理解并掌握平行四边形的概念和平行四边形的性质2. 能综合运用平行四边形的性质解决平行四边形的相关计算问题及简单的证明题3. 在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法4. 综合运用平行四边形的判定方法和性质来解决问题二、重点、难点:重点:平行四边形的定义,平行四边形的性质与判定方法难点:综合运用平行四边形的性质和判定方法进行有关的论证和计算三、考点分析:考查重点:(1)平行四边形的概念及面积的求法;(2)平行四边形的性质和判定;(3)理解平行四边形是中心对称图形,过对称中心的直线把它分成面积相等的两部分;(4)在平行四边形中运用全等三
2、角形的知识解题知识梳理1. 平行四边形的定义:(1)定义:两组对边分别平行的四边形是平行四边形(2)表示:平行四边形用符号“”来表示如图,在四边形ABCD中,ABDC,ADBC,那么四边形ABCD是平行四边形平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”注意:平行四边形中的对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角。而三角形的对边是指一个角的对边,对角是指一条边的对角。2. 平行四边形的性质(1)边:平行四边形的对边平行且相等(2)角:平行四边形的对角相等(3)对角线:平行四边形的对角线互相平分(4)对称性:平行四边形是中心对
3、称图形,对角线的交点为对称中心3. 平行四边形的判定方法(1)定义识别:两组对边分别平行的四边形是平行四边形(2)用平行四边形的判定定理识别:判定定理:两组对边分别相等的四边形是平行四边形判定定理:对角线互相平分的四边形是平行四边形判定定理:一组对边平行且相等的四边形是平行四边形4. 三角形中位线(1)定义:连接三角形两边中点的线段叫做三角形的中位线每个三角形都有三条中位线(2)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半典型例题知识点一:平行四边形的性质的应用例1. 已知:ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F求证:OEOF
4、,AE=CF,BE=DF思路分析:1)题意分析:本题考查平行四边形的性质应用。2)解题思路:求证线段相等可利用三角形全等,即证出OE、OF所在三角形全等,即AOECOF。解答过程:四边形ABCD是平行四边形,ABCD,1234又OAOC(平行四边形的对角线互相平分),AOECOF(AAS)OEOF,AE=CF(全等三角形对应边相等)四边形ABCD是平行四边形,AB=CD(平行四边形对边相等)ABAE=CDCF即BE=DF解题后的思考:利用平行四边形的性质,可以证角相等、线段相等。其关键是根据所要证明的全等三角形,选择需要的边、角相等条件。例2. 已知四边形ABCD是平行四边形,AB10cm,A
5、D8cm,ACBC,求BC、CD、AC、OA的长以及ABCD的面积思路分析:1)题意分析:本题考查平行四边形的性质与勾股定理的应用。2)解题思路:由平行四边形的对边相等,可得BC、CD的长,在RtABC中,由勾股定理可得AC的长再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底高(高为此底上的高),可求得ABCD的面积。解答过程:在 ABCD中,AB10cm,AD8cm,BC=AD=8cm、CD=AB=10cm。ACBC,在RtABC中,由勾股定理ABCD的面积=86=48cm2解题后的思考:这道题考查平行四边形面积的计算解题时需要应用勾股定理,先
6、求得平行四边形一边上的高,然后才能应用该公式计算在以后的解题过程中,还会遇到需要应用勾股定理来求高或底的问题。知识点二:平行四边形判定定理的应用例3. 已知:如图,ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF求证:四边形BFDE是平行四边形思路分析:1)题意分析:本题考查平行四边形的判定。2)解题思路:这道题是平行四边形的性质与判定的综合运用。此题有多种解法,其中利用对角线互相平分的性质来证明较为简单。解答过程:在ABCD中,对角线AC、BD交于点O,AO=CO,BO=DOAE=CFAOAE=COCF,OE=OF四边形BFDE是平行四边形解题后的思考:你还有其他的证
7、明方法吗?比较一下,哪种证明方法简单。例4. 已知:如图,ABBA,BCCB,CAAC求证:(1)ABCB,CABA,BCAC;(2)ABC的顶点A、B、C分别是BCA各边的中点思路分析:1)题意分析:本题考查平行四边形的性质与判定的综合运用2)解题思路:根据“两组对边分别平行的四边形是平行四边形”可知四边形ABCB是平行四边形,再利用平行四边形的性质可得所求结论。解答过程:(1)ABBA,CBBC,四边形ABCB是平行四边形ABCB(平行四边形的对角相等)同理CABA,BCAC(2)由(1)证得四边形ABCB是平行四边形同理,四边形ABAC是平行四边形ABBC, ABAC(平行四边形的对边相
8、等)BCAC同理BACA, ABCBABC的顶点A、B、C分别是BCA的边BC、CA、AB的中点解题后的思考:本题要求学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题。例5. 已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF思路分析:1)题意分析:本题考查平行四边形的判定定理及性质的运用。2)解题思路:证明BE=DF,可以证明两个三角形全等,也可以证明四边形BEDF是平行四边形,通过比较,可以看出第二种方法简单解答过程:四边形ABCD是平行四边形, ADCB,AD=CB E、F分别是AD、BC的中点, DEBF,且DE=1/2AD,BF=1/2BC DE=BF
9、四边形BEDF是平行四边形(一组对边平行且相等的四边形是平行四边形) BE=DF解题后的思考:此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次分明,且利用知识较多,因此要求学生应具有清晰的证明思路。例6. 已知:如图,ABCD中,E、F分别是AC上两点,且BEAC于E,DFAC于F求证:四边形BEDF是平行四边形思路分析:1)题意分析:本题考查平行四边形的判定定理及性质的运用。2)解题思路:因为BEAC于E,DFAC于F,所以BEDF此时需再证明BE=DF,这需要证明ABE与CDF全等,由角
10、角边证明即可解答过程:四边形ABCD是平行四边形, AB=CD,且ABCD BAE=DCFBEAC于E,DFAC于F, BEDF,且BEA=DFC=90 ABECDF (AAS) BE=DF 四边形BEDF是平行四边形(一组对边平行且相等的四边形是平行四边形)解题后的思考:解题的关键是掌握平行四边形的判定方法,会综合运用平行四边形的判定方法和性质会应用这些方法进行几何的推理证明,并通过学习,增强分析问题、寻找最佳解题途径的能力知识点三:三角形中位线的应用例7. 已知:如图(1),在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点求证:四边形EFGH是平行四边形思路分析:1)题
11、意分析:本题考查三角形中位线定理的应用2)解题思路:因为已知点E、F、G、H分别是各边的中点,可以设法应用三角形中位线的性质找到四边形EFGH各边之间的关系由于四边形的一条对角线可以把四边形分成两个三角形,所以可添加辅助线,连接AC或BD,构造“三角形中位线”的基本图形后,此题便可得证解答过程:连结AC(图(2),在DAC中,H、G是AD、DC的中点,AH=HD,CG=GD,HGAC,HG=1/2AC(三角形中位线性质)同理EFAC,EF=1/2ACHGEF,且HG=EF四边形EFGH是平行四边形解题后的思考:在今后的复杂图形中,当已知中同时出现中点的条件时,我们要注意三角形中位线性质的运用,
12、进一步证明线段平行或倍分问题。提分技巧1. 复习全等三角形和四边形的有关知识2. 学过本节内容后,应掌握平行四边形的性质和判定方法,可从三方面记忆。从边看;从对角线看;从角看。3. 了解平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再用平行四边形的性质去解决某些问题4. 平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,同学们要熟练地掌握这些知识预习导学一、预习新知:下节课我们将学习一种特殊的平行
13、四边形矩形,请同学们预习这部分内容。二、预习点拨:1. 矩形有什么特殊的性质?2. 怎样判断一个平行四边形或者四边形是矩形呢?同步练习(答题时间:60分钟)一、选择题1. 如图1,在平行四边形ABCD中,下列各式不一定正确的是( )2. 如图2,在ABCD中,EF/AB,GH/AD,EF与GH交于点O,则该图中的平行四边形的个数共有( )A. 7 个 B. 8个 C. 9个 D. 11个3. 下列给出的条件中,能判定四边形ABCD是平行四边形的是( )A. ABCD ,AD=BC B. AB=AD,CB=CDC. AB=CD,AD=BC D. B=C,A=D4. 如图3,在ABCD中,B=110,延长AD至F,延长CD至E,连接EF,则E+F的值为( )A. 110 B. 30 C. 50 D. 705. 如图4,ABCD中,对角线AC,BD相交于点O,将AOD平移至BEC的位置,则图中与OA相等的其他线段有( )A. 1条 B. 2条 C. 3条 D. 4条6. 如图5,点D、E、F分别是AB、BC、CA边的中点,则图中的平行四边形一共有( )A. 1个 B. 2个 C. 3个 D. 4个二、填空题1. 在平行四边形ABCD中,若AB=70,则A=_,B=_,C=_,D=_2. 在ABCD中,ACBD,相交于O,AC=6,BD=