《一些镜头的基本知识 (2).doc》由会员分享,可在线阅读,更多相关《一些镜头的基本知识 (2).doc(11页珍藏版)》请在金锄头文库上搜索。
1、一些镜头的基本知识一些镜头的基本知识.txt一个人一盒烟一台电脑过一天一个人一瓶酒一盘蚕豆过一宿。永远扛不住女人的小脾气,女人永远抵不住男人的花言巧语。要得到一些,就必须付出一些;“没有免费的午餐”。镜头的光学设计也是这样。最简单的摄影不需要镜头,针孔就可以,它的光圈一般是f/128或更小。单镜片镜头在早期的相机使用,成像可以比针孔锐利,光圈也更大,基本可以手持拍摄。工作光圈大概在f/12左右。由于当时使用大底片,效果可以接收。从双镜片再到三镜片,镜头的光圈更大,成像也相当锐利,Cooke Triplet是目前已知的最好设计。如果是四片镜片,成像已经相当好,比如Zeiss Tessar(天塞)
2、,四片三组结构,其中两片粘在一起形成一组。四片结构的天塞镜头唯一的问题是光圈不能做得太大,不然像质会下降。对于35毫米相机,天塞结构的顶限是f/2.8,即使使用当前最好的光学玻璃。要光圈更大,就要更多镜片。速度(即最大光圈)不是唯一的问题。视角越大,需要的镜片越多。一支低速小视角镜头,例如Leitz 560mm f/6.8 Telyt,只用了两片镜片。50mm f/1.4一般需要6或7片,21mm f/4.5 Zeiss Biogon使用了8片。更多的镜片使镜头更大更重也更贵。到此为止,我们只是考虑了制造一个锐利、快速或广角的镜头需要的镜片数目,但还有另一个问题要担心,就是镜头的实际尺寸。上面
3、560mm Telyt镜头中的两片镜片当聚焦在无限远时,必须距离胶片560mm,因此镜头有60厘米长!相反的,21mm Biogon全长为45毫米,当聚焦无限远时,镜头的光心必须距离胶片21毫米,这21毫米基本被镜片占据,使最后一片镜片离胶片只有5毫米。这就是为什么Biogon不能用于单反相机,因为没有给反光镜的空间!1、远摄和倒置远摄结构(Telephoto and Reverse-Telephoto) 解决上述两个问题的办法惊人的相似。为了缩短长焦镜头的长度,一组新的镜片称为“远摄组”被放在主镜组的后面。这就是一个远摄镜头(telephoto)和一个长焦镜头(long-focus)的区别。
4、另一方面,为了使广角镜头后面有足够空间,一组新镜片加在了主镜组的前面,被称为“倒置远摄”组,因为产生的效果和远摄镜头刚好相反。新加入的镜片组只是改变后组与胶片的距离,并不能提高镜头的锐度,甚至会产生负作用。一支普通长焦镜头可以比远摄镜头更锐利,一支普通广角镜头也可能比“倒置远摄”结构的镜头更锐利。因此有些长焦和广角镜头仍在生产,而广角镜头用在单反机身上时必须锁起反光镜,对焦要靠另外的取景器。有些成像质量相当好,比如Zeiss和Nikon的21mm,以及Canon的19mm。不过远摄镜头和“倒置远摄”镜头的方便性是毋庸置疑的。2、变焦镜头上面讨论的都是定焦镜头。如果镜头使用的透镜数目够多,透镜的
5、相对位置又可以移动,就可以产生不同的焦距,也就是变焦镜头。到了这一步,透镜总数通常都是10多片,但并不是所有透镜都为了提高镜头的锐度。细心的设计,使用高级光学玻璃,可以使变焦镜头的成像相当好,但他们仍比不上最好的定焦镜头。为达到一定水平的锐度,变焦范围越大,需要的透镜越多。对变焦范围的衡量,通常使用变焦比。一般焦距越长,变焦比可以越大;而广角端焦距越短,就越难提供大变焦比。大光圈需要更多,广角需要更多透镜,变焦需要更多透镜,应此变焦镜头通常光圈较小并不奇怪。大部分变焦镜头在f/4左右,可能有些较大到f/3.5左右,有些较小只有f/4.5左右,不过f/4是一个较好的平均值。大光圈变焦头不成比例的
6、巨大、沉重,且更昂贵:从f/4到f/2.8只有一档,但你可能要多花三倍的钱。问题不在广角端,而在于长焦端。一支200mm f/2.8已经很大很贵,而一支70-210mm f/2.8将更大更贵。另一条路是选择变光圈变焦镜头。这种镜头的结构比恒定光圈变焦镜头简单,但长焦端的光圈会比较小,而且中间焦段的实际光圈不容易确定,不过使用通镜测光的话问题不大。3、计算机辅助设计(CAD)计算机辅助设计使现代的镜头更优秀,即使便宜的变焦头效果也可以接受。使用计算机,设计、测试和修改可以在几小时或几天内完成,而以前需要几星期甚至几个月。然而,CAD并不总是为了制造可能的最锐利的镜头。比如较便宜的镜头,通常在锐度
7、和成本之间进行折衷。聪明的程序仅使用廉价的光学玻璃、小曲率的曲面和球面透镜就可以设计出不错的镜头。但为了得到最佳成像,必须使用特殊玻璃、大曲率和非球面等更昂贵的技术。4.1、特殊玻璃由最昂贵的光学玻璃制成的透镜,象纯金一样,是按照重量计价的。设计师寻找的通常是高折射率低色散玻璃。色散使不同颜色(频率)的光线聚于不同的焦平面,这显然影响了锐度。将所有颜色的光线聚在同一焦平面,就是镜头光学设计设计中的“色差校正”。能做到这样的镜头被称为“achromats”或“achromatics”,意为“无色”。实际上,“无色”镜头只是把红光和蓝光聚于同一平面,还有很大的校正空间。而“apochromat”(
8、“away from colour”)可以把红、绿、蓝光聚于同一焦点,是成像锐度显著提高,这也是为什么很多镜头广告在宣传“Apo”。由于对于摄影镜头的消色差还没有严格的定义,因此很难不怀疑有些镜头的消色差比其他更好。类似的,尼康的“ED”(极低色散)显然是指ED镜头中使用的特殊玻璃。但玻璃怎样才变得特殊呢?很少镜头使用玻璃以外的材料。实际上,萤石由于独特的光学性质被使用。然而,萤石镜片非常贵,也非常脆弱,一此极短的冲击就能令它破碎,并且如果不与空气隔绝的话,它会逐渐分解。如今,萤石已被特殊玻璃取代(除了在不计费用的军用镜头中)。树脂不适于制造高级镜头,通常用于廉价镜头。但是Tamron曾推出的
9、将树脂覆盖在玻璃上的“混和非球面”镜头却很特别。4.2、大曲率镜片的曲率约大,制造成本越高。大曲率的优势在于,与高折射率低色散玻璃配合时,可以代替两或三片普通透镜。对于一些超广角镜头和变焦头,曲率非常大的曲面是最好的设计。4.3、非球面绝大多数镜头使用的只是“普通”球面的透镜。虽然研磨非球面也是可能的,如抛物面或双曲面,但更昂贵。非球面的使用也可以减少透镜的总数:一个非球面透镜可以达到两个球面透镜的效果,或多个非球面镜可以达到球面镜不能达到的效果。任何时候,非球面镜头都是屈指可数的,他们通常是同样的球面镜头价格的两到三倍。通常只有大光圈镜头使用非球面镜,并且通常只有一个镜片使用非球面。随着镜头
10、设计和玻璃制造的提高,非球面变的越来越不必要。然而,Tamron的“混和非球面”镜头提供了很好的校正,又避免了树脂的缺点,也许是非球面在为了存在的唯一方式。现在非球面镜好象使用还是很多。作者十年前的观点有其局限性。随着技术的发展,非球面镜的制造成本应该也降低了吧?5、反差和透镜数量你现在可能认为,使用足够的透镜,正确的种类和正确的形状,就可以制造几乎任何镜头。大体上来说,就是这样。但一个不能逃避的事实是,更多的透镜,意味着更低的反差。虽然多层镀膜可以大幅度减小镜片表面的反光,但还无法完全消除,这些反射的杂光降低了反差。早期无镀膜镜头在每个镜片表面可以反射百分之五到十的光线,这就是为什么要尽量减
11、少镜片空气接触面的数量。比如,Zeiss 50mm f/1.5 Sonnar只有六个镜片空气接触面,而Leitz 50mm f/1.5 Summarit有十个。Summarit分辨率更高;但Sonnar的反差更大,以至看起来更锐利。如今镜片表面的反光率只有大概百分之1.5到0.01。廉价镜头的镀膜效果也较差,而昂贵镜头虽然有较多镜片,但镀膜质量也更高,使得反差更高。镀膜使用了光的“干涉”原理,镀膜的厚度必须是光波长的四分之一。显然,一层镀膜只能减弱一种波长(颜色)光线的反射。多层镀膜可以减弱多种波长光线的反射。不管其他厂商怎么说,Leitz看起来应该是最早使用多层镀膜的厂家,在五十年代晚期。镀
12、膜和多层镀膜似乎使遮光罩失去了以往的重要性,但有些情况下好的遮光罩仍然可以产生惊人的效果。理想的遮光罩应该适于底片的长宽比,并且可调长度。这在大中幅设备中很普遍,但在35毫米系统中几乎没有。有些人把中幅机的遮光罩用在35毫米镜头上。在可能的情况下,尽量使用遮光罩,有益无害。6、制造工艺无论你的镜头设计的多么好,理论上能到达多么高的水平,如果制造不当,一起都前功尽弃。精确的镜头到胶片距离是最明显,也是最容易做到的。还有,镜头的组装必须达到不可想象的精确;所有镜片的轴心都必须完全吻合;每一个镜片都必须精确的固定在镜桶上。固定必须非常牢固,不然镜头掉落或受到碰撞时就会改变结构。一支昂贵的镜头将得到非
13、常精密的组装,以及在每一步的测试和试验。一支廉价镜头可能轴线没有完全对齐;或者虽然对齐了,但在日常使用中的碰撞就可能倒置镜片位移。(也就是不抗造。一分钱一分货的道理。)对焦机构必须精确和顺畅,并且耐用。光圈和叶片,以及相连接的机构也必须顺滑。所有螺丝和压环必须拧紧,并且保持不变。廉价镜头比昂贵的镜头更容易松动,虽然很大程度取决于你怎样保养镜头。比如说,骑摩托长途旅行,肯定对镜头不利。好镜头不只是成像优秀,也要耐用,要经得起岁月的考验。7、材料与使用方式比起来,镜头卡口使用的材质并不太重要。即使塑料也没什么不可以,因为那毕竟不是轴承表面,并且如果它的强度足够应付日常的积压和拉伸。轻金属合金可以替
14、代黄铜,如果它们做得当的表面处理(通常是电镀),但钢(除了不锈钢)应该谨慎使用,如果有腐蚀的可能。对于接触面,特别是卡口,较硬的材质如不锈钢或厚镀层的黄铜,显然要比裸露的黄铜或轻金属合金更合适。一个常识是,耐用意味着重量,虽然有很多中方法可以不使用黄铜制造耐用的镜头。一个真正优质的镜头如果正常使用,可以用上几十年,即使是专业人士的粗暴使用。一个廉价镜头,虽然刚开始还不错,但无法保持那么久。让时间验证一切吧!8、分辨率分辨率,即一个镜头可以表现的细节的多少,显然非常重要,并且基于平均的视力和图片尺寸,很容易设定锐度的标准。正常视力的人可以分辨约一分的弧度,或大约相当于在3米的距离看到白背景上的黑
15、头发。使用传统摄影术语来讲,约等于在25厘米的距离观看照片上的8线对/毫米。因此,从扩印照片时的放大率就可以大致计算出底片上需要多大的分辨率,也就是用放大率乘以8 lp/mm(线对/毫米)。比如4x6英寸照片是4倍放大率,所以在底片上需要4x8=32 lp/mm的分辨率;6倍放大率(即8x10英寸或20x25厘米照片)就需要48 lp/mm。“丢失”与“多余”分辨率在实际中,我们需要底片上的分辨率比上面的计算结果要稍微高一点,因为放大过程中要损失一些锐度;并且放大率越大,需要的“多余”的分辨率就越多。因此,如果理论计算需要32 lp/mm,那么实际上有35-40 lp/mm就应该可以;但如果理
16、论上需要底片上有64 lp/mm,实际上可能需要80 lp/mm。很大程度取决于放大镜头,以及放大时对焦的精确;而对于扫描底片,扫描仪类似于一个完美的放大机,因此在过程中损失的分辨率较少。胶片本身也很重要,慢速、细颗粒的胶片比高速、粗颗粒胶片的分辨能力更强。衍射限制的分辨率然而,分辨率在理论上还受到绝对的制约。撇开深奥的理论不说,一个明显的定律就是,衍射对分辨率的限制,以lp/mm为单位,在百分之五十的反差,分辨率的顶限是1000/n,这里n是光圈值。因此,在f/2衍射限制的分辨率是500 lp/mm;在f/4为250 lp/mm;而f/8就限制在125 lp/mm。实际上,100 lp/mm或稍微高一点,是普通用途胶片可以记录的最高分辨率,即使是用来获得最高的锐度。1000/n定律也解释了