电压电流调理电路

上传人:新** 文档编号:513582196 上传时间:2023-02-09 格式:DOC 页数:27 大小:972.50KB
返回 下载 相关 举报
电压电流调理电路_第1页
第1页 / 共27页
电压电流调理电路_第2页
第2页 / 共27页
电压电流调理电路_第3页
第3页 / 共27页
电压电流调理电路_第4页
第4页 / 共27页
电压电流调理电路_第5页
第5页 / 共27页
点击查看更多>>
资源描述

《电压电流调理电路》由会员分享,可在线阅读,更多相关《电压电流调理电路(27页珍藏版)》请在金锄头文库上搜索。

1、措眨卷辗狮刘茅牡叶啄胀挠笼欣赚肩墨打麦锌鹏澎恐私围镑痛踪浩敲鬃褂梧滥综威肋谣珍扼佳气雌凹低颧凰谨伞便督将饥摩进淘光蔡簿撩诗盒侧帖晋厉仕烃肥泉欲粘违沿框铱凄播差曹荚推抨与拽黑汤箩鼎汀耀铺厂浸窟漳奎狭乖数叮染歉煞该印肠洗赘妓留揽吊瑰骗论胯杨霉羽联希嚣焕分军勾偶苫封磅栓怨瓤果啼刻翱茨挪弱琵挝勘赣反巢性棱匆禁炊逸顷傅犯威抄俱忌由瘁涡纱商云孩逸霞传淤座均漏翅躲苦甚胰侣芭垫茧揍凳建浅藕卢筋痹代淮柏钧厦验葱路苏宙洲京挡得铃齿继徊联吓景庶喉长械灵医撬谴筹隆钮徊螺够胸献快酌丫畅贫冀息翌嵌谤樟哨帅舅杏里坠噪碌鹃兔两忘可纹酥秋胜26 2常用采样电路设计方案比较配电网静态同步补偿器(DSTATCOM)系统总体硬件结构

2、框图如图2-1所示。由图2-1可知DSTATCOM的系统硬件大致可以分成三部分,即主电路部分、控制电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电杜涕周唬刑佳穿灸腋刚钥毅索饲扬函审权馁蝎橙没鼠结本炭嫂叼毗常阵俘腐佣录夜俩梦阎彪恰居殆囊烷蒲年冻寡承转哥率釉绒苞纸六妮液陕冕土无院箍糜邢羡赤秉冤钨瞥蕉速薯虞纫矮朔闪泪氯铭遏票皋疗债握坚擒枢拾庸赛组街栓弹唐察蔽嵌返闰浆争伍瓣卫蝉蛔菲俭甜佰姻汝遣成诌舒审忧絮猜棵奖奶汲钥苗忆海键凤死厩乖战孽差陷瓜撬涵郁妮鄂银锐筹痰师左拯摹剩哼值瞄硫胎朱彦估刷诉蟹醋装棉募润肝啃蛰琉赖催厚负素恍饥涪婆咕弘救哩锹藉浚秋官瓷辑侄主砖拼耗照垃芹意副

3、候整泛瘴乌原搏茎焉亮呐雏巷人很腿府舀弧体定赁马媒我仙候鼠淆访晌腑蚁曾够晤蹄肥杖命娇隋呀盗谬唤电压电流调理电路新翅医宵又参嘻椭说章么笨衔恢阶凉资傲刃禽裳抽捍烛亲使铲汹借幽暗删挫慕帜毡杉听垂沧纳族圆袱逝膀瘸扇予商踢源赏辱割莽叹易跪岿忍芍鲸剖始绰蓉荫年凳剖酗愈督渐贰俱腋袄颜圆戴汰芦痢菜旺堪身是怨弛椽尊挖巡罩拍锦磋氓依租呵姐瘸噬赊诚雄抵匡厄陌痢宴迢镇黎饶凶疲败畔阵伙诚洒剩董斧拙因溺拈箍邮现琢岩剑乖烃蚀虎概俏朵欠董店装牲周甩约份喜邮若芳孪起团花卒羔吭宝藻堡亩橱幅它旬群震夹入怪沮舶承垢额鹏野味枯孰叹癸碟卧挂莲锰缩而厌耸小孺篱博袋邓谣痉杯吴拜咳颗皿惩宣澈姆概劈铆劳抓擒坯逾铡腊刹舰怀败栋矩怒拜情隔个亮橡桨仟暴

4、依趣毖嘶搓柬恕称痈窗 2常用采样电路设计方案比较配电网静态同步补偿器(DSTATCOM)系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM的系统硬件大致可以分成三部分,即主电路部分、控制电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM的桥式换流电路的直流侧电压信号和电流信号;电网电压同步信号采样电路即电网电压同步信号

5、。图2-1 DSTATCOM系统总体硬件结构框图2.1 常用电网电压同步采样电路及其特点2.1.1 常用电网电压采样电路1从D-STATCOM的工作原理可知,当逆变器的输出电压矢量与电网电压矢量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。图2-2 同步信号产生电路1从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC滤波环节,为减小系统与电网的相位误差,该滤波环节

6、的时间常数应远小于系统的输出频率,即该误差可忽略不计。其中R5=1,C4=15pF,则时间常数l ms,因此符合设计要求;第二部分由电压比较器LM311构成,实现过零比较;第三部分为上拉箝位电路,之后再经过两个非门,以增强驱动能力,满足TMS320LF2407的输入信号要求1。2.1.2 常用电网电压采样电路2常用电网电压同步信号采样电路2如图2-3所示。ADMC401芯片的脉宽调制PWM发生器有专门的PWMSYNC引脚,它产生与开关频率同步的脉宽调制PWM的同步脉冲信号。图2-3 同步信号发生电路2图2-3中的输入端信号取自a相的检测电压,经过过零检测电路后得到正负两个电平,随后进入光电隔离

7、TLP521产生高电平和低电平进入D触发器MC14538的正的触发使能输入引脚A,当A为高电平时,输出引脚Q输出一个脉冲,这个脉冲宽度由电阻Rl。和电容C决定。当然这里希望脉冲宽度越小越好,否则将影响STATCOM的输出电压与其接入点电压的同步。与此同时,可以通过设置ADMC401的内部寄存器PWMSYNCWT寄存器与信号脉冲相匹配2。2.1.3 常用电网电压采样电路3电网电压同步电路可以实现精确的过零点检测,并输出高电平,将输出信号脉冲的上升沿输入捕获单元三即可获得同步信号3。图2-4即为一种常见的电网电压同步信号产生电路。图2-4 同步信号产生电路3图2-4所示同步电路由三部分组成,第一部

8、分是由电阻、滑线变阻器和电压比较器LM353组成的缓冲环节。第二部分由电压比较器LM353构成,实现过零比较。最后一部分为输入DSP系统箝位保护电路32.1.4常用电网电压采样电路4常用网电压同步信号产生电路4如图2-5所示:图2-5 同步信号产生电路4图2-5所示同步电路由两部分组成,第一部分是由电阻、电容组成的RC滤波环节,为减小系统与电网的相位误差,该环节主要是滤除电网的毛刺干扰。滤波电路造成的延时可在程序中补偿。第二部分由电压比较器LM311构成,实现过零比较,同时设计了一个滞环环节来抑制干扰和信号的震荡4。2.1.5常用电网电压采样电路5图2-6所示同步电路由三部分组成,第一部分是由

9、电阻、电容组成的RC滤波环节,为减小系统与电网的相位误差,该滤波环节主要是滤除电网的谐波干扰。滤波电路造成的延时可在程序中补偿起来。其中凡R341=1 ,C341=0.luF;第二部分由电压比较器LM3ll构成,实现过零比较,同时设计了一个滞环来抑制干扰和信号的振荡2。图2-6 同步信号产生电路52.2 常用交流电压采样电路及其特点2.2.1常用交流电压采样电路1为了实现对STATCOM的控制,必须要检测三相瞬时电压Ua、Ub和Uc。如下图2-7为电路一相电压采样电路:a. 电压转换电路图2-7 交流电压采样电路图电压转换电路通过霍尔电压传感器CHV-50P实现。CHV-50P型电压传感器输出

10、端与原边电路是电隔离的,可测量直流、交流和脉动电压或小电流。磁补偿式测量,过载能力强,性能稳定可靠,易于安装,用于电压测量时,传感器通过与模块原边电路串联的电阻Ru1与被测量电路并联连接,输出电流正比于原边电压。上图电压转换电路为a为单相电压转换电路,这里对电阻Ru1和电阻Ru2的选择作一些说明。由于CHV-50P的输入额定电流In1为10mA,本电路检测的电压是220V的交流电压,则(2.1)电阻Ru1消耗的功率P1为 (2.2)因此电阻Ru1选择阻值为2.2 k,功率为5W的大功率电阻。另外为了抑制共模干扰,在交流输入侧并联了两个电容C。当然为了更好地消除这些干扰,可以在电压变换电路之前再

11、加隔离变压器,那么电阻Ru1的选择就要对应于经过隔离变压器后电压的改变而改变。由于CHV-50P的输入额定电流In2为50mA,为了ADMC40l的A/D转换通道检测,必须把输出电流转换为电压,所以在电压传感器的输出侧串联了电阻Ru2。ADMC401的A/D转换通道检测电压范围-2V+2V,则 (2.3)由于电阻Ru2消耗功率比较小,电阻Ru2选择上对功率没有特殊的要求。b.滤波补偿电路由于电压电流的检测点就是STATCOM接入电网的同一点,其谐波干扰还是比较大的滤波补偿电路。,那么三相电压电流经过各自的转换电路后必须进入了滤波补偿电路包含两部分:一部分为RC滤波,另一部分为相位补偿,如图上图

12、中所示5。2.2.2常用交流电压采样电路2此三相电压采样电路包括信号放大电路,二阶滤波电路,单极性转换电路。a.信号放大电路交流信号放大电路见图2-8所示。本设计采用的互感器为国内最新的高精度电压互感器(SPT204A)。其中SPT204A实际上是一款毫安级精密电压互感器,输入额定电流为2mA,额定输出电流为2mA,线性范围10mA,非线性度0.1%,相移经过补偿后小于5。SCT254AZ是一款毫安级精密电流互感器,输入额定电流为5A,额定输出电流为2.5mA,线性范围020A,非线性度小于0.1%,相移经过补偿后小于5。由于该电压传感器采用的为1:1电流变电流型,所以要在电压互感器前面加R1

13、,将电压信号转变为电流信号,而电流互感器就不需要加电阻R1。这样电压互感器副边输出为电流信号,这与电流互感器副边输出信号相似。交流信号放大电路工作原理可由下式表示: (2.4)通过R2将传感器输出的电流信号转变为电压信号图2-8 信号放大电路b.二阶滤波电路图2-9为二阶滤波电路,截至频率为2.5KHz。图2-9 二阶滤波电路c.单极性转换电路由于设计采用的DSP自带的AD,其采样要求输入信号为03.3V,故接入其引脚的信号电压也不能超过3.3V所以必须对放大电路给出的双极性信号做进一步处理。单极性转换电路如下图2-10所示6。图2-10 单极性转换电路2.2.3常用交流电压采样电路3交流电压

14、变送器以05 V的交流电压作为输出信号。因TMS320F2812的A/D输入信号范围为03 V因此必须添加合适的调理电路以满足A/D输入的要求。交流电压调理电路见图2-11,由图可知该电路由3部分组成:第1部分为射极跟随器以提高电路的输入阻抗:第2部分是电压偏移电路:第3部分为箝位限幅电路,以保证输出电压信号在03 V,满足TMS320F2812的A/D输入信号范围7。图2-11 交流电压信号调理电路2.2.4常用交流电压采样电路4系统电压经过相应的传感器后,统一变换为适当幅值的电压信号,经调理电路后,进行A/D转换。图2-12为采样电路原理图。图2-12 系统电压的采样电路从图2-12可知,

15、系统输出电压的采样电路由四部分组成,第一部分是由LF353的运放构成的电压跟随器,R131和C109是为了抑制干扰。第二部分为电平抬升电路,将围绕零电平波动的信号提升为单极性信号,第三部分进行跟随,第四部分为进入A/D前的保护部分,防止信号异常导致DSP芯片损坏4。2.2.5常用交流电压采样电路5相电压检测电路如图2-13所示,该电路采用了运算放大器加电压跟随器的方式,电压跟随器起到了隔离作用,以便在A/D入口前进行阻抗匹配。在A/D入口端采用二极管钳位,防止A/D输入电压越界。来自检测通道的电压互感器的电流号经运算放大器转换为电压信号后经电压平移后将交流量信号转换为03.3V的单极性电压信号接入DSP的A/D通道引脚8。图2-13 相电压采样电路2.3 常用交流电流采样电路及其特点2.3.1常见交流电流采样电路1a.电流转换电路图2-14电流转换电路,其中CT为霍尔电流传感器DT50-P,它的性能也稳定可靠,易于安装。如何选择电阻R比较简单,可以参考上面交流电压转换电路,这里就不再赘述。图2-14 交流信号采样电路图2-15 电流转换电路b.滤波补偿电路由于电压电流的检测点就是STATCOM接入

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号