2014北京四中高考总复习集合的概念和运算知识梳理

上传人:cl****1 文档编号:512050990 上传时间:2022-10-10 格式:DOCX 页数:6 大小:3.21MB
返回 下载 相关 举报
2014北京四中高考总复习集合的概念和运算知识梳理_第1页
第1页 / 共6页
2014北京四中高考总复习集合的概念和运算知识梳理_第2页
第2页 / 共6页
2014北京四中高考总复习集合的概念和运算知识梳理_第3页
第3页 / 共6页
2014北京四中高考总复习集合的概念和运算知识梳理_第4页
第4页 / 共6页
2014北京四中高考总复习集合的概念和运算知识梳理_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《2014北京四中高考总复习集合的概念和运算知识梳理》由会员分享,可在线阅读,更多相关《2014北京四中高考总复习集合的概念和运算知识梳理(6页珍藏版)》请在金锄头文库上搜索。

1、数学高考总复习:集合的概念和运算【考纲要求】1、 理解集合及表示法,掌握子集,全集与补集,子集与并集的定义;2、 掌握含绝对值不等式及一元二次不等式的解法;3、 学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。【知识网络】集 合集合表示法集合的关系集合的运算描述法图示法列举法相等包含交集并集补集子集、真子集【考点梳理】1、集合的概念:(1) 集合中元素特征,确定性,互异性,无序性;(2) 集合的分类: 按元素个数分:有限集,无限集;按元素特征分;数集,点集。如数集y|y=x2,表示非负实数集,点集(x,y)|y=x2表示开口向上,以y轴为对称轴的抛物线;(3) 集合的表示法:列举法

2、:用来表示有限集或具有显著规律的无限集,如N+=0,1,2,3,;描述法。2、两类关系:(1) 元素与集合的关系,用或表示; (2)集合与集合的关系,用,=表示,当AB时,称A是B的子集;当AB时,称A是B的真子集。3、集合运算 (1)交,并,补,定义:AB=x|xA且xB,AB=x|xA,或xB,CUA=x|xU,且xA,集合U表示全集;(2) 运算律,如A(BC)=(AB)(AC),CU(AB)=(CUA)(CUB),CU(AB)=(CUA)(CUB)等。【典型例题】类型一:集合的概念、性质与运算例1、已知集合,则=( )A-1,1 B0 c-l D-l,0答案:C解析:集合,所以,选C。

3、点评:集合需要通过求解一个指数不等式得到。举一反三:【变式】已知集合,则 ABC.D.答案: A解析:集合表示一个正方形区域;集合表示一个圆形区域,且点只在中。类型二:集合的两种关系例2、已知集合, (1)若,求实数的值; (2)若,求实数的取值范围。解析:, (1)因为,所以 (2)因为,所以,或,所以,或点评:数形结合是中学数学的重要思想,全面地挖掘题中隐藏条件是解题素质的一个重要方面。举一反三:【高清课堂:集合 思考题1(1)】【变式】设2011x,x2,则满足条件的所有x组成的集合的真子集的个数为()A3 B4C7 D8【答案】由题意得x2011或x,所以集合2011,的真子集有221

4、3个选A。例3(1)设全集U=不超过5的自然数,A=x|x2-5x+6=0,B=x|x2-7x+12=0,则AB=,AB=,=,=;(2)设全集,已知,则= ,=。解析:(1)方法一:U=0,1,2,3,4,5,A=2,3,B=3,4,则AB=3,AB=2,3,4,=0,1,3,4,5,=0,1,5.方法二:用韦恩图示:由图知AB=3,AB=2,3,4,=0,1,3,4,5,=0,1,5.(2)由不等式,得=(-,1),由不等式,得=(-1,+),因而=(-1,1),.点评:1.本题主要考察集合的交、并、补综合运算。要求对集合的描述法表示有较深刻的认识。集合的三种表示语言要熟悉。2. 关于集合

5、的运算,一般应把各参与运算的集合化到最简形式,再进行计算.3. 对元素个数较少的集合的运算常采用公式法或韦恩图法,而对不等式解集的运算一般用数轴法较为简捷.举一反三:【高清课堂:集合 例1(2)】【变式1】若集合Ay|y3x1,Bx|,则AB()AB1,0)C(0,1 D1,1【答案】C【高清课堂:集合 思考题2】【变式2】设S为复数集C的非空子集若对任意x,yS,都有xy,xy,xyS,则称S为封闭集下列命题:集合Sabi|a,b为整数,i为虚数单位为封闭集;若S为封闭集,则一定有0S;封闭集一定是无限集;若S为封闭集,则满足STC的任意集合T也是封闭集其中的真命题是_(写出所有真命题的序号

6、)【答案】类型三:分类讨论的集合问题例4.设函数的定义域为D。(1),求使的概率;(2),求使的概率.解析:(1)的所有可能为:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3)共计12种。而那么满足D=R的的所有可能为:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,2),(3,3),(4,3)共计9种,其概率 (2)所有的点构成的区域的面积=12 而 满足构成的区域的面积为7,故所求概率点评:在一定条件约束下求参数的问题,体现了分类讨论的数学思想。另外本题稍微涉及到一点

7、概率知识。举一反三:【变式】已知集合,若,求实数m的取值范围【答案】由不等式恒成立,可得,()(1)当,即时,()式可化为,显然不符合题意(2)当时,欲使()式对任意x均成立,必需满足即解得集合B是不等式的解集,可求得,结合数轴,只要即可,解得内容总结(1)数学高考总复习:集合的概念和运算【考纲要求】理解集合及表示法,掌握子集,全集与补集,子集与并集的定义(2)数学高考总复习:集合的概念和运算【考纲要求】理解集合及表示法,掌握子集,全集与补集,子集与并集的定义(3)集合的表示法:列举法:用来表示有限集或具有显著规律的无限集,如N+=0,1,2,3,(4)(2)集合与集合的关系,用,=表示,当AB时,称A是B的子集

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 研究生课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号