物理化学第五版刘俊吉周亚平李松林着高等教育出版社

上传人:鲁** 文档编号:508723206 上传时间:2023-01-10 格式:DOC 页数:192 大小:3.19MB
返回 下载 相关 举报
物理化学第五版刘俊吉周亚平李松林着高等教育出版社_第1页
第1页 / 共192页
物理化学第五版刘俊吉周亚平李松林着高等教育出版社_第2页
第2页 / 共192页
物理化学第五版刘俊吉周亚平李松林着高等教育出版社_第3页
第3页 / 共192页
物理化学第五版刘俊吉周亚平李松林着高等教育出版社_第4页
第4页 / 共192页
物理化学第五版刘俊吉周亚平李松林着高等教育出版社_第5页
第5页 / 共192页
点击查看更多>>
资源描述

《物理化学第五版刘俊吉周亚平李松林着高等教育出版社》由会员分享,可在线阅读,更多相关《物理化学第五版刘俊吉周亚平李松林着高等教育出版社(192页珍藏版)》请在金锄头文库上搜索。

1、第一章 气体的pVT性质1.1 物质的体膨胀系数 与等温压缩率的定义如下 试推出理想气体的,与压力、温度的关系。 解:根据理想气体方程 1.5 两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。若将其中的一个球加热到 100 C,另一个球则维持 0 C,忽略连接细管中气体体积,试求该容器内空气的压力。 解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。 标准状态: 因此, 1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。 (1) 保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试 求两种气体混合后的压力。(

2、2) 隔板抽取前后,H2及N2的摩尔体积是否相同?(3) 隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后 即在上述条件下混合,系统的压力认为。 (2)混合气体中某组分的摩尔体积怎样定义? (3)根据分体积的定义 对于分压 1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。重复三次。求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。 解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。 设第一次充氮气前,系统中氧的摩尔分

3、数为,充氮气后,系统中氧的摩尔分数为,则,。重复上面的过程,第n次充氮气后,系统的摩尔分数为 , 因此 。1.13 今有0 C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals方程计算其摩尔体积。实验值为。 解:用理想气体状态方程计算 用van der Waals计算,查表得知,对于N2气(附录七) ,用MatLab fzero函数求得该方程的解为 也可以用直接迭代法,取初值 ,迭代十次结果1.16 25 C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10 C,使部分水蒸气凝结为

4、水。试求每摩尔干乙炔气在该冷却过程中凝结出水的物质的量。已知25 C及10 C时水的饱和蒸气压分别为3.17 kPa及1.23 kPa。 解:该过程图示如下 设系统为理想气体混合物,则 1.17 一密闭刚性容器中充满了空气,并有少量的水。但容器于300 K条件下大平衡时,容器内压力为101.325 kPa。若把该容器移至373.15 K的沸水中,试求容器中到达新的平衡时应有的压力。设容器中始终有水存在,且可忽略水的任何体积变化。300 K时水的饱和蒸气压为3.567 kPa。 解:将气相看作理想气体,在300 K时空气的分压为 由于体积不变(忽略水的任何体积变化),373.15 K时空气的分压

5、为 由于容器中始终有水存在,在373.15 K时,水的饱和蒸气压为101.325 kPa,系统中水蒸气的分压为101.325 kPa,所以系统的总压 第二章 热力学第一定律2.5 始态为25 C,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。途经a先经绝热膨胀到 -28.47 C,100 kPa,步骤的功;再恒容加热到压力200 kPa的末态,步骤的热。途径b为恒压加热过程。求途径b的及。 解:先确定系统的始、末态 对于途径b,其功为 根据热力学第一定律 2.6 4 mol的某理想气体,温度升高20 C,求的值。 解:根据焓的定义 2.10 2 mol某理想气体,

6、。由始态100 kPa,50 dm3,先恒容加热使压力体积增大到150 dm3,再恒压冷却使体积缩小至25 dm3。求整个过程的 。 解:过程图示如下 由于,则,对有理想气体和只是温度的函数 该途径只涉及恒容和恒压过程,因此计算功是方便的 根据热力学第一定律 2.13 已知20 C液态乙醇(C2H5OH,l)的体膨胀系数,等温压缩率,密度,摩尔定压热容。求20 C,液态乙醇的。 解:由热力学第二定律可以证明,定压摩尔热容和定容摩尔热容有以下关系 2.14 容积为27 m3的绝热容器中有一小加热器件,器壁上有一小孔与100 kPa的大气相通,以维持容器内空气的压力恒定。今利用加热器件使器内的空气

7、由0 C加热至20 C,问需供给容器内的空气多少热量。已知空气的。 假设空气为理想气体,加热过程中容器内空气的温度均匀。 解:在该问题中,容器内的空气的压力恒定,但物质量随温度而改变 注:在上述问题中不能应用,虽然容器的体积恒定。这是因为,从 小孔中排出去的空气要对环境作功。所作功计算如下: 在温度T时,升高系统温度 dT,排出容器的空气的物质量为 所作功 这正等于用和所计算热量之差。2.15 容积为0.1 m3的恒容密闭容器中有一绝热隔板,其两侧分别为0 C,4 mol的Ar(g)及150 C,2 mol的Cu(s)。现将隔板撤掉,整个系统达到热平衡,求末态温度t及过程的。已知:Ar(g)和

8、Cu(s)的摩尔定压热容分别为及,且假设均不随温度而变。 解:图示如下 假设:绝热壁与铜块紧密接触,且铜块的体积随温度的变化可忽略不计 则该过程可看作恒容过程,因此 假设气体可看作理想气体,则 2.16 水煤气发生炉出口的水煤气的温度是1100 C,其中CO(g)和H2(g)的摩尔分数均为0.5。若每小时有300 kg的水煤气由1100 C冷却到100 C,并用所收回的热来加热水,是水温由25 C升高到75 C。求每小时生产热水的质量。CO(g)和H2(g)的摩尔定压热容与温度的函数关系查本书附录,水的比定压热容。 解:300 kg的水煤气中CO(g)和H2(g)的物质量分别为 300 kg的

9、水煤气由1100 C冷却到100 C所放热量 设生产热水的质量为m,则 2.18 单原子理想气体A于双原子理想气体B的混合物共5 mol,摩尔分数,始态温度,压力。今该混合气体绝热反抗恒外压膨胀到平衡态。求末态温度及过程的。 解:过程图示如下 分析:因为是绝热过程,过程热力学能的变化等于系统与环境间以功的形势所交换的能量。因此, 单原子分子,双原子分子 由于对理想气体U和H均只是温度的函数,所以 2.19 在一带活塞的绝热容器中有一绝热隔板,隔板的两侧分别为2 mol,0 C的单原子理想气体A及5 mol,100 C的双原子理想气体B,两气体的压力均为100 kPa。活塞外的压力维持在100

10、kPa不变。今将容器内的隔板撤去,使两种气体混合达到平衡态。求末态的温度T及过程的。 解:过程图示如下 假定将绝热隔板换为导热隔板,达热平衡后,再移去隔板使其混合,则 由于外压恒定,求功是方便的 由于汽缸为绝热,因此 2.20 在一带活塞的绝热容器中有一固定的绝热隔板。隔板靠活塞一侧为2 mol,0 C的单原子理想气体A,压力与恒定的环境压力相等;隔板的另一侧为6 mol,100 C的双原子理想气体B,其体积恒定。今将绝热隔板的绝热层去掉使之变成导热板,求系统达平衡时的T及过程的。 解:过程图示如下 显然,在过程中A为恒压,而B为恒容,因此 同上题,先求功 同样,由于汽缸绝热,根据热力学第一定律 2.23 5 mol双原子气体从始态300 K,200 kPa,先恒温可逆膨胀到压力为50 kPa,在绝热可逆压缩到末态压力200 kPa。求末态温度T及整个过程的及。 解:过程图示如下 要确定,只需对第二步应用绝热状态方程 ,对双原子气体 因此 由于理想气体的U和H只是温度的函数, 整个过程由于第二步为绝热,计算热是方便的。而第一步为恒温可逆 2.24 求证在理想气体p-V 图上任一点处,绝热可逆线的斜率的绝对值大于恒温可逆线的绝对值。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号