光催化材料080804210

上传人:鲁** 文档编号:508081849 上传时间:2022-08-12 格式:DOC 页数:6 大小:144KB
返回 下载 相关 举报
光催化材料080804210_第1页
第1页 / 共6页
光催化材料080804210_第2页
第2页 / 共6页
光催化材料080804210_第3页
第3页 / 共6页
光催化材料080804210_第4页
第4页 / 共6页
光催化材料080804210_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《光催化材料080804210》由会员分享,可在线阅读,更多相关《光催化材料080804210(6页珍藏版)》请在金锄头文库上搜索。

1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流光催化材料080804210.精品文档.光催化材料的研究概况目前,人类使用的主要能源有石油、天然气和煤炭三种。根据国际能源机构的统计,地球上这三种能源能供人类开采的年限,分别只有40年、50年和240年。值得注意的是,中国剩余可开采储蓄仅为1390亿吨标准煤,按照中国2003年的开采速度16.67亿吨/年,仅能维持83年。中国石油资源不足,天然气资源也不够丰富,中国已成为世界第二大石油进口国。因此,开发新能源,特别是用清洁能源替代传统能源,迅速地逐年降低它们的消耗量,保护环境改善城市空气质量早已经成为关乎社会可持续发展的重大课题。中国能源发展

2、方向可以锁定在前景看好的五种清洁能源: 水电、风能、太阳能、氢能和生物质。太阳能不仅清洁干净,而且供应充足,每天照射到地球上的太阳能是全球每天所需能源的一万倍以上。直接利用太阳能来解决能源的枯竭和地球环境污染等问题是其中一个最好、直接、有效的方法。光催化就是利用太阳能的一种新技术。它不仅可以直接分解水、环境中的有毒有害物质,还可以直接将太阳能转化为电能与化学能(如氢能)等清洁能源。对于从根本上解决环境污染和能源短缺等问题具有重要意义。下面,从光催化材料的几个方面来简述其研究概况。一、 光催化材料的基本原理半导体光催化材料大多是n型半导体材料,都具有区别于金属或绝缘物质的特别的能带结构,即在价带

3、和导带之间存在一个禁带。当光子能量高于半导体吸收阈值的光照射半导体时,半导体的价带电子发生带间跃迁,即从价带跃迁到导带,从而产生光生电子和空穴。此时吸附在纳米颗粒表面的溶解氧俘获电子形成超氧负离子,而空穴将吸附在催化剂表面的氢氧根离子和水氧化成氢氧自由基。而超氧负离子和氢氧自由基具有很强的氧化性,能将绝大多数的有机物氧化至最终产物CO2和H2O,甚至对一些无机物也能彻底分解。以TiO2为例,揭示了其晶体结构、表面羟基自由基以及氧缺陷对量子效率的影响机制;采用元素掺杂、复合半导体以及光敏化等手段拓展其光催化活性至可见光响应范围;通过在其表面沉积贵金属纳米颗粒可以提高电子一空穴对的分离效率,提高其

4、光催化活性。以TiO2为载体的光催化技术已成功应用于废水处理、空气净化、自清洁表面、染料敏化太阳电池以及抗菌等多个领域。二、高效光催化材料必须满足的条件(1)半导体适当的导带和价带位置,在净化污染物应用中价带电位必须有足够的氧化性能,在光解水应用中,电位必须满足产H2和产O2的要求。(2)高效的电子-空穴分离能力,降低它们的复合几率。(3)可见光响应特性:低于420nm左右的紫外光能量大概只占太阳光能的4%,如何利用可见光乃至红外光能量,是决定光催化材料能否在得以大规模实际应用的先决条件。常规anatase-type TiO2 只能在紫外光响应,虽然通过搀杂改性,其吸收边得以红移,但效果还不够

5、理想。 因此,开发可见光响应的高效光催化材料是该领域的研究热点。三、提高光催化材料性能的途径(1)颗粒微细纳米化:降低光生电子-空穴从体内到表面的传输距离,相应的,它们被复合的几率也大大降低。(2)过渡金属掺杂和非金属掺杂 :金属:掺杂后形成的杂质能级可以成为光生载流体的捕获阱,延长载流子的寿命。非金属:TiO2中N,S,C,P,卤族元素等。(3)半导体复合:利用异种半导体之间的能带结构不同,复合后,如光生电子从A粉末表面输出,而空穴从B表面导出。也即电子和空穴得到有效分离。(4)表面负载:将半导体纳米粒子固定技术在不同的载体上(多孔玻璃、硅石、分子筛等)制备分子或团簇尺寸的光催化剂。 (5)

6、表面光敏:利用具有较高重态的具有可见光吸收的有机物,在可见光激发下,电子从有机物转移到半导体粉末的导带上。该种方法不具有实用性,一方面,有机物的稳定性值得质疑;另一考虑的是经济因素。(6)贵金属沉积:贵金属有Pt, Au, Pd, Rh, Ni, Cu, Ag等 。(7)外场耦合:热场,电场,磁场,微波场,超声波场。目前,研究较多的是电场效应。其他场的研究也不少见,效果一般,更多的是从工艺层次来说明效果,所谓理论的东西不多。四、光催化材料的开发现状目前国内外光催材料的研究多数停留在二氧化钛及相关修饰。尽管这些工作卓有成效,但是在规模化利用太阳能方面还远远不够。光催化研究的关键问题之一是发展能够

7、在太阳光下高效工作的稳定、低成本半导体光催化材料。为了与传统的TiO2 ,SrTiO3等仅具有紫外光响应的光催化材料相区别,人们称具有可见光响应的光催化材料为新型光催化材料。新型光催化材料开发方法主要集中在以下两个方面:一是对紫外光响应型宽带隙光催化材料的改性使其获得可见光响应;另一方面是通过材料设计的方法设计和开发可见光响应型光催化材料。拓展紫外光响应型半导体的光响应至可见光区的方法主要集中在元素掺杂改性、半导体复合与光敏化等方面。另外,通过材料设计的方法,从晶体结构、能带结构设计出发,采用理论设计与实验相结合的方法也可以获得具有可见光响应的光催化材料。(一)传统光催化材料改造1、掺杂改性:

8、元素掺杂可以通过轨道杂化有效地改变半导体的导价带位置。半导体光催化材料掺杂改性主要有3种方式:调控导带位的阴离子掺杂、调控价带位的阳离子掺杂以及共掺杂。阴离子掺杂主要采用B,c,N,S和P等非金属元素的P轨道和氧化物半导体中的O:P轨道杂化提高其导带位置,从而使一些宽带隙半导体具有可见光响应;阳离子掺杂则多采用cr,Nj,Fe,V等具有3d电子轨道的过渡族金属在宽带隙氧化物半导体的带隙中插入一个能带使其获得可见光响应;上述两种掺杂方式一般遵循原子比例平衡原则。共掺杂则在遵循原子比例平衡条件下兼顾化合价态平衡,以阴、阳离子共掺同时调整半导体的导、价带位置,改变能带结构,改善光催化活性。对传统光催

9、化材料的掺杂改性主要以TiO2为代表。2、复合半导体:复合半导体光催化材料目前主要有两大类:固溶体和异质结。利用两种半导体形成固溶体,其性质随各个组元在固溶体中所占百分比而变化,可以实现对半导体带隙的连续可调,因而固溶体半导体光催化材料近年来得到了广泛发展。固溶体光催化材料按照能带调控可以归为三类:导带连续调控、价带连续调控以及双带同时调控。(二)新型光催化材料的开发目前,新型光催材料设计方法主要以量子化学计算方法为主。借助于理论计算可以清晰地了解半导体光催化材料电子结构、能带信息以及光催化反应影响因素。利用这一方法已成功地研究了元素掺杂、取代对光催化材料性能影响的物理机制,并由此设计出一批新

10、型光催化材料。最近几十年,光催化材料种类得到了极大的丰富,大致可以归为以下几类:氧化物半导体、氮氧化物半导体、硫化物半导体以及相应的固溶体光催化材料。多元氧化物:在现有光催化材料里,多元氧化物催化材料占了绝大多数。可大致归结为含In,含Ag,含Bi以及Ti,Ta,Nb基等多元氧化物。他们在考虑晶体结构以及运用导价带调控等手段发展了一系列新型氧化物光催化材料。目前,以日本学者J. Sato为代表的研究人员,已经把目光锁定在p区元素氧化物上,如含有Ga,Ge,Sb,In,Sn,Bi元素的氧化物。氮化物与氮氧化物:在氮氧化物体系中,由于N与O杂化所形成的2p轨道能级要高于O的2p轨道能级,因而氮氧化

11、物的价带电势比对应的氧化物的价带电势要高,从而缩小了禁带宽度,促使其对可见光具有吸收。Ta的氮氧化物(TaON,Ta3N5)在光催化氧化水为分子氧方面表现出较高的活性,其中TaON在420 nm单波长光辐照下最高量子效率可达34。氮氧化物光催化材料一般具有合适的导价带位置,因而在光催化分解水制氢和环境净化方面均具有巨大的应用潜力。有a,b等体系。硫化物:硫化物作为一类光催化材料具有合适的带隙和良好的光催化分解水产氢活性,然而这一类催化材料大多光稳定性差,在光辐照下容易发生光腐蚀,因而限制了这一类光催化材料的应用。但在CdS表面担载少量的MoS2可以较好地克服光腐蚀问题 ,且进一步的研究表明硫化

12、物颗粒之间所形成的界面十分平滑,从而有利于载流子传输一分离。主要有n,d等。聚合物:2008年,王心晨等人报导了类石墨结构的氮化碳(g-C3N4 )具有可见光下分解水产氢或产氧活性。与目前所有光催化材料不同的是,该材料具有简单的晶体结构,其导、价带分别由C2p和N2p轨道构成。后续,他们又利用金属元素对g-C3N4进行了功能化修饰,研究表明,金属修饰可以改变g-C3N4的电子结构,其中Fe修饰的g-C3N4表现出了良好的光催化降解苯的性能。这一类材料因晶体结构简单,故对其进行研究有助于对光催化现象的认知。新兴光催化材料:众所周知,卤化银具有光不稳定性。以AgC1为例,在光照射下,光生电子与银阳

13、离子结合可将氯化银还原成金属银。值得一提的是,2008年,黄伯标小组制备了一种具有等离子体效应的AgAgC1光催化剂。他们首先利用离子交换法制备了结晶性良好的AgC1,然后在光与弱还原剂作用下,将部分AgC1还原成Ag纳米颗粒。Ag颗粒具有很高的表面等离子体效应,使其能够高效地吸收可见光,因而具有较高的光催化降解有机物活性。最近,他们利用同样的思想发展了AgAgBr光催化材 ,同样具有较高的光催化活性。AgAgX(X=C1,Br)等离子体光催化材料有效地拓展了卤化银在可见光区的光吸收,提高了对太阳光的利用。且由于金属银与卤化银的紧密接触,使体系内所产生的电子能较容易由金属银颗粒传递,保证了体系的稳定性。这一发现开辟了一条通过金属表面等离子体效应拓展光催化材料可见光光吸收,进而提高光催化材料性能的新途径。最后,需要说明的是,目前高效光催化材料开发仍然存在很多难题。针对这些难题,迫切需要从光催化物理本质出发,以先进的实验技术手段揭示影响光催化反应过程的关键因素所在。深化对于光催化反应机制的认识,由宏观的、定性的描述到微观的、定量的研究,对光吸收、电子空穴激发和输运过程以及界面动力学过程进行综合研究,阐明能量传递和转换的机制,以指导如何高效地发挥现有光催化材料的催化活性和开发高量子效率的光催化材料。

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 研究生课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号