微波的波长

上传人:公**** 文档编号:507777090 上传时间:2022-08-25 格式:DOCX 页数:14 大小:22.18KB
返回 下载 相关 举报
微波的波长_第1页
第1页 / 共14页
微波的波长_第2页
第2页 / 共14页
微波的波长_第3页
第3页 / 共14页
微波的波长_第4页
第4页 / 共14页
微波的波长_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《微波的波长》由会员分享,可在线阅读,更多相关《微波的波长(14页珍藏版)》请在金锄头文库上搜索。

1、微波的波长微波是指频率为 300MHz-300GHz 的电磁波,是无线电波中一个有限频 带的简称,即波长在1米(不含1 米)到1 毫米之间的电磁波,是分米波、厘米 波、毫米波的统称。微波频率比一般的无线电波频率高,通常也称为“超高频电 磁波”。微波作为一种电磁波也具有波粒二象性.微波量子的能量为1 99 X10 -25 1. 99X10-22j.微波的性质微波的基本性质通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑 料和瓷器,微波几乎是穿越而不被吸收。对于水和食物等就会吸收微波而使自身 发热。而对金属类东西,则会反射微波。一、穿透性微波比其它用于辐射加热的电磁波,如红外线、远红外线等波长更长

2、, 因此具有更好的穿透性。微波透入介质时,由于介质损耗引起的介质温度的升高, 使介质材料内部、外部几乎同时加热升温,形成体热源状态,大大缩短了常规加 热中的热传导时间,且在条件为介质损耗因数与介质温度呈负相关关系时,物料 内外加热均匀一致。二、选择性加热物质吸收微波的能力,主要由其介质损耗因数来决定。介质损耗因数大 的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也 弱。由于各物质的损耗因数存在差异,微波加热就表现出选择性加热的特点。物 质不同,产生的热效果也不同。水分子属极性分子,介电常数较大,其介质损耗 因数也很大,对微波具有强吸收能力。而蛋白质、碳水化合物等的介电常数

3、相对 较小,其对微波的吸收能力比水小得多。因此,对于食品来说,含水量的多少对 微波加热效果影响很大。三、热惯性小微波对介质材料是瞬时加热升温,能耗也很低。另一方面,微波的输出 功率随时可调,介质温升可无惰性的随之改变,不存在“余热”现象,极有利于 自动控制和连续化生产的需要。微波的产生微波能通常由直流电或50MHz交流电通过一特殊的器件来获得。可以产 生微波的器件有许多种,但主要分为两大类:半导体器件和电真空器件。电真空 器件是利用电子在真空中运动来完成能量变换的器件,或称之为电子管。在电真 空器件中能产生大功率微波能量的有磁控管、多腔速战速调管、微波三、四极管、 行波管等。在目前微波加热领域

4、特别是工业应用中使用的主要是磁控管及速调 管。微波的热效应微波对生物体的热效应是指由微波引起的生物组织或系统受热而对生物 体产生的生理影响.热效应主要是生物体内有极分子在微波高频电场的作用下反 复快速取向转动而摩擦生热;体内离子在微波作用下振动也会将振动能量转化为 热量;一般分子也会吸收微波能量后使热运动能量增加.如果生物体组织吸收的 微波能量较少,它可借助自身的热调节系统通过血循环将吸收的微波能量(热量) 散发至全身或体外.如果微波功率很强,生物组织吸收的微波能量多于生物体所 能散发的能量,则引起该部位体温升高.局部组织温度升高将产生一系列生理反 应,如使局部血管扩张,并通过热调节系统使血循

5、环加速,组织代谢增强,白细 胞吞噬作用增强,促进病理产物的吸收和消散等微波的非热效应 微波的非热效应是指除热效应以外的其他效应,如电效应、磁效应及化 学效应等在微波电磁场的作用下,生物体内的一些分子将会产生变形和振动, 使细胞膜功能受到影响,使细胞膜内外液体的电状况发生变化,引起生物作用的 改变,进而可影响中枢神经系统等微波干扰生物电(如心电、脑电、肌电、神 经传导电位、细胞活动膜电位等)的节律,会导致心脏活动、脑神经活动及内分 泌活动等一系列障碍对微波的非热效应,人们还了解的不很多当生物体受强 功率微波照射时,热效应是主要的(一般认为,功率密度在在 10mWcm2 者多 产生微热效应且频率越

6、高产生热效应的阈强度越低);长期的低功率密度(1 m W cm2 以下)微波辐射主要引起非热效应微波加热的原理微波是频率在 300 兆赫到 300 千兆赫的电波,被加热介质物料中的水分 子是极性分子。它在快速变化的高频点磁场作用下,其极性取向将随着外电场的 变化而变化。造成分子的运动秀相互摩擦效应,此时微波场的场能转化为介质内 的热能,使物料温度升高,产生热化和膨化等一系列物化过程而达到微波加热干 燥的目的。微波杀菌的机理 微波杀菌是利用了电磁场的热效应和生物效应的共同作用的结果。微波 对细菌的热效应是使蛋白质变化,使细菌失去营养,繁殖和生存的条件而死亡。 微波对细菌的生物效应是微波电场改变细

7、胞膜断面的电位分布,影响细胞膜周围 电子和离子浓度,从而改变细胞膜的通透性能,细菌因此营养不良,不能正常新 陈代谢,细胞结构功能紊乱,生长发育受到抑制而死亡。此外,微波能使细菌正 常生长和稳定遗传繁殖的核酸RNA闲脱氧核糖核酸DNA,是由若干氢键松弛, 断裂和重组,从而诱发遗传基因突变,或染色体畸变甚至断裂。微波是一种高频率的电磁波,其频率范围约在300300 000MHz相 应的波长为1000. 1cm)在300MHz至300GHz之间.它具有波动 性、高频性、热特性和非热特性四大基本特性。微波作为一种电磁波 也具有波粒二象性.微波量子的能量为1 99x10 -25 1. 99x10-22j

8、.它与生物组织的相互作用主要表现为热效应和非热效 应。微波能够透射到生物组织内部使偶极分子和蛋白质的极性侧链以 极高的频率振荡,引起分子的电磁振荡等作用,增加分子的运动,导 致热量的产生。微波还能够对氢键、疏水键和范德华产生作用,使其 重新分配,从而改变蛋白质的构象与活性。生物体的非热特性一生 物效应是微波的重要特性之一,它已成为医学、细胞学等方面研究的 一个重要方面,同时它也能为微波理疗或微波手术等方面提供理论依 据 随着人们对微波加热技术认识的深入,它已引起了许多科学工作 者的关注,并在一些方面进行了深入而广泛的研究。11 微波的特性111 选择性加热物质吸收微波的能力,主要由其介质损耗因

9、数来决定。介质损耗因数 大的 物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波 的能力也弱。由于各物质的损耗因数存在差异,微波加热就表现出选择性加热 的特点。物质不同,产生的热效果也不同。水分子属极性分子,介电常数较大, 其介质 损耗因数也很大,对微波具有强吸收能力。而蛋白质、碳水化合物等 的介电常数相对较小,其对微波的吸收能力比水小得多。因此,对于食品来说, 含水量的多少对微波加热效果影响很大。112 穿透性 微波比其它用于辐射加热的电磁波,如红外线、远红外线等波长更长, 因 此具有更好的穿透性。微波透入介质时,由于介质损耗引起的介质温 度的升高, 使介质材料内部、外部几乎同时加

10、热升温,形成体热源状态,大大缩 短了常规 加热中的热传导时间,且在条件为介质损耗因数与介质温度呈负相关 关系时,物料内外加热均匀一致。113 热惯性小 微波对介质材料是瞬时加热升温,能耗也很低。另一方面,微波的输 出功 率随时可调,介质温升可无惰性的随之改变,不存在“余热”现象,极 有利于自动控制和连续化生产的需要。12 微波的生物效应机制 当微波作用于生物体时,在生物控制系统的作用和调节下,生物体必 然要建立新的平衡状态以适应外界电磁环境条件的变化,因此也就必 然产生某些生物效应微波的生物效应主要是由微波的热效应,其次是非热效应所引起的12.1 微波的热效应 微波对生物体的热效应是指由微波引

11、起的生物组织或系统受热而对 生物体产生的生理影响热效应主要是生物体内有极分子在微波高频 电场的作用下反复快速取向转动而摩擦生热;体内离子在微波作用下 振动也会将振动能量转化为热量;一般分子也会吸收微波能量后使热 运动能量增加如果生物体组织吸收的微波能量较少,它可借助自身 的热调节系统通过血循环将吸收的微波能量 (热量)散发至全身或体 外如果微波功率很强,生物组织吸收的微波能量多于生物体所能散 发的能量,则引起该部位体温升高局部组织温度升高将产生一系列 生理反应,如使局部血管扩张,并通过热调节系统使血循环加速,组 织代谢增强,白细胞吞噬作用增强,促进病理产物的吸收和消散等 12.1.1 微波的加

12、热优点 微波自身的特性决定了微波具有以下优点:(1) 加热迅速,均匀。不需热传导过程,且具有自动热平稳性能,避 免过热。(2) 加热质量高,营养破坏少,能最大限度的保持食物的色、香,味 减少食物中维生素的破坏。(3) 安全卫生无污染,对食品的杀菌能力强.因为微波能是控制在金属 制成的加热室内和波导管中工作,所以微波泄露被有效的抑制,没有 放射线危害及有害气体排放,不产生余热和粉尘污染。既不污染食物, 也不污染环境。微波杀菌除了热效应之外还有生物效应,许多病菌在 微波加热不到100C时就全部被杀死。(4)节能高效。由于含有水分的物质极易直接吸收微波而发热,没有经过其他中间转换环节,因此除少量的传

13、输损耗外几乎无其他损耗。 比一般常规加热省电约30%八-50%。(5)具有快速解冻功能。在微波场中,冻结食品在从内到外同时吸收 微波能量,使冻结食品整体发热,容易形成整体均一的解冻,缩短解 冻时间,迅速越过一 50C - 0 C这个易发生蛋白质变性、食品变色变 味的温度带,以保持食品的品质不致下降。1 22 微波的非热效应微波的非热效应是指除热效应以外的其他效应,如电效应、磁效应及 化学效应等在微波电磁场的作用下,生物体内的一些分子将会产生 变形和振动,使细胞膜功能受到影响,使细胞膜内外液体的电状况发 生变化,引起生物作用的改变,进而可影响中枢神经系统等微波干 扰生物电(如心电、脑电、肌电、神

14、经传导电位、细胞活动膜电位等) 的节律,会导致心脏活动、脑神经活动及内分泌活动等一系列障碍对 微波的非热效应,人们还了解的不很多当生物体受强功率微波照射时,热效应是主要的(一般认为,功率密度在在10mW/cm2者多产 生微热效应且频率越高产生热效应的阈强度越低);长期的低功率 密度(1 m W/ cm2 以下)微波辐射主要引起非热效应13 微波在农业科学上的应用 微波对许多发芽率低或发芽慢的农作物或林术种子都作了催芽试验, 以探索能否提高发芽率。种子含水量对处理效果有明显影响,一般 说来, 低含水率种子受加热处理的影响大,也能忍受较高温度不致 受损。微波具有显著热效应,而且有促进 G0 细胞进

15、入增殖周期(Carpita. N. C. & Murray W.N;1976)。另外,胡燕月等(1996) 胡萱日等(1995),分别比较研究了微波和热击处理水稻种子的生物 学效应,在相同升温(45C)下,结果表明微波处理可极显著促进芽活 力,热击处理则可以极显著促进根活力 。赖麟与冯鸿(1997)利用 50W、200W 和 500W 的微波照射白兰瓜种子,发现 200W 功率的微 波处理可以极显著地提高其发芽率,同时也能显著地提高萌发话力。 200w 微波处理的种子从萌发 24 小时起,其淀粉酶含量显著地高于 对照, 48 小时期淀粉酶同工酶有新的酶带产生。说明这一功率的微 波能有效地激话白

16、兰瓜种子萌发期的淀粉酶,加速物质和能量的代 谢,从而提高种子萌发活力。黄桂琴等(1999)利用 105W 微波辐 射黄瓜种子10s、20s,结果发现提早长出真叶株高增加。处理种 子的时闻为 30 s ,促进种子早出苗.但随着生长期的延长株高被抑制, 叶片数也减少.当辐射剂量1 05W ,处理种子的时间分刷为85、 10s、 14s,促进黄瓜幼苗的主根和侧根增长与脱氲酶活性增加,表明根活 力增强.杨俊红等(2003;2004)利用正交试验研究了微波处理对 白菜种子萌发特性及其耐盐性的影响。结果表明:微波处理前,萌发 环境的含盐量对种子发芽率的影响最大,而且含盐量和碱性的影响较 显著;经微波处理后,萌发环境的含盐量和碱性对种子发芽率的影响 处于次要地位,而且无显著性;优选条件下种子的发芽率比对照组明 显提高。P. Reddy

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号