基于单片机温度控制系统设计的功率放大环节设计部分--课程设计任务书--学士学位论文

上传人:M****1 文档编号:507437030 上传时间:2023-11-15 格式:DOC 页数:22 大小:243.50KB
返回 下载 相关 举报
基于单片机温度控制系统设计的功率放大环节设计部分--课程设计任务书--学士学位论文_第1页
第1页 / 共22页
基于单片机温度控制系统设计的功率放大环节设计部分--课程设计任务书--学士学位论文_第2页
第2页 / 共22页
基于单片机温度控制系统设计的功率放大环节设计部分--课程设计任务书--学士学位论文_第3页
第3页 / 共22页
基于单片机温度控制系统设计的功率放大环节设计部分--课程设计任务书--学士学位论文_第4页
第4页 / 共22页
基于单片机温度控制系统设计的功率放大环节设计部分--课程设计任务书--学士学位论文_第5页
第5页 / 共22页
点击查看更多>>
资源描述

《基于单片机温度控制系统设计的功率放大环节设计部分--课程设计任务书--学士学位论文》由会员分享,可在线阅读,更多相关《基于单片机温度控制系统设计的功率放大环节设计部分--课程设计任务书--学士学位论文(22页珍藏版)》请在金锄头文库上搜索。

1、沈阳理工大学课程设计任务书学 院专 业学生姓名班级学号课程设计题目基于单片机温度控制系统设计-功率放大环节设计实践教学要求与任务:1) 构成单片机温度控制系统2) 功率放大环节设计3) 实验调试4) THFCS-1现场总线控制系统实验5) 撰写实验报告工作计划与进度安排:1) 第12天,查阅文献,构成单片机温度控制系统2) 第34天,功率放大环节设计3) 第56,实验调试4) 第79天,THFCS-1现场总线控制系统实验5) 第10天,撰写实验报告指导教师: 201 年 月 日专业负责人:201 年 月 日学院教学副院长:201 年 月 日摘 要温度控制系统广泛应用于工业控制领域,如钢铁厂、化

2、工厂、火电厂等锅炉的温度控制系统,电焊机的温度控制系统等。温度控制系统在国内各行各业的应用虽然己经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。成熟的温控产品主要以“点位”控制及常规的PID控制器为主,它们只能适应一般温度系统控制,而用于较高控制场合的智能化、自适应控制仪表,国内技术还不十分成熟,形成商品化并广泛应用的控制仪表较少.随着我国经济的发展及加入WTO,我国政府及企业对此都非常重视,对相关企业资源进行了重组,相继建立了一些国家,企业的研发中心,开展创新性研究,使我国仪表工业得到了迅速的发展。音频放大电路主要以单相桥

3、式整流及三端集成稳压器为主。完成将输入220v,50Hz的市电,输出为稳定的5V的直流电。在电子电路设计中,很多系统需要对输出信号进行放大,以提高其带负载能力,驱动后级电路,因此就要对信号进行功率放大。功率放大器的主要性能指标有输出功率及效率。目前,温度控制器产品从模拟、集成温度控制器发展到智能数码温度控制器。智能温控器(数字温控器)是微电子技术、计算机技术和自动测试技术的结合,特点是能输出温度数据及相关的温度控制量,适配各种控制器,并且它是在硬件的基础上通过软件来实现控制功能的,其智能化程度也取决于软件的开发水平,现阶段正朝着高精度高质量的方向发展,相信以我国的实力,温控技术在不久的将来一定

4、会为于世界前列。关键词:温度控制系统, Proteus, PID, 功率放大电路目 录摘 要1第一章 功率放大环节设计31.1、固态继电器31.2、三极管61.3、RC回路71.4、功率放大环节电路8第二章 温度控制的总体设计和思路92.1、温度控制方框图92.2、AT89S52单片机的结构102.3、温度传感器的选择112.4、温度采集电路122.5、数码管温度显示电路132.6、 数码管动态显示132.7、电源5V总体设计141.6、电路总体设计图142.8、 DS18B20初始化152.9、 系统流程图17第三章 调试18第四章 结束语19参考文献201第一章 功率放大环节设计功率放大电

5、路通常作为多级放大电路的输出级。在很多电子设备中,要求放大电路的输出级能够带动某种负载,例如驱动仪表,使指针偏转;驱动扬声器,使之发声;或驱动自动控制系统中的执行机构等。总之,要求放大电路有足够大的输出功率。这样的放大电路统称为功率放大电路。1.1、固态继电器固态继电器(Solid State Relays,缩写SSR)是一种无触点电子开关,由分立元器件、膜固定电阻网络和芯片,采用混合工艺组装来实现控制回路(输入电路)与负载回路(输出电路)的电隔离及信号耦合,由固态器件实现负载的通断切换功能,内部无任何可动部件。尽管市场上的固态继电器型号规格繁多,但它们的工作原理基本上是相似的。主要由输入(控

6、制)电路,驱动电路和输出(负载)电路三部分组成。固态继电器的输入电路是为输入控制信号提供一个回路,使之成为固态继电器的触发信号源。固态继电器的输入电路多为直流输入,个别的为交流输入。直流输入电路又分为阻性输入和恒流输入。阻性输入电路的输入控制电流随输入电压呈线性的正向变化。恒流输入电路,在输入电压达到一定值时,电流不再随电压的升高而明显增大,这种继电器可适用于相当宽的输入电压范围。固态继电器的驱动电路可以包括隔离耦合电路、功能电路和触发电路三部分。隔离耦合电路,目前多采用光电耦合器和高频变压器两种电路形式。常用的光电耦合器有光三极管、光双向可控硅、光二极管阵列(光伏)等。高频变压器耦合,是在一

7、定的输入电压下,形成约10MHz的自激振荡,通过变压器磁芯将高频信号传递到变压器次级。功能电路可包括检波整流、过零、加速、保护、显示等各种功能电路。触发电路的作用是给输出器件提供触发信号固态继电器的输出电路是在触发信号的控制下,实现固态继电器的通断切换。输出电路主要由输出器件(芯片)和起瞬态抑制作用的吸收回路组成,有时还包括反馈电路。目前,各种固态继电器使用的输出器件主要有晶体三极管(Transistor)、单向可控硅(Thyristor或SCR)、双向可控硅(Triac)、MOS场效应管(MOSFET)、绝缘栅型双极晶体管(IGBT)等。 固态继电器原理 固态继电器(Solidstate R

8、elay, SSR)是一种由固态电子组件组成的新型无触点开关,利用电子组件(如开关三极管、双向可控硅等半导体组件)的开关特性,达到无触点、无火花、而能接通和断开电路的目的,因此又被称为“无触点开关”。相对于以往的“线圈簧片触点式”继电器(Electromechanical Relay, EMR),SSR没有任何可动的机械零件,工作中也没有任何机械动作,具有超越EMR的优势,如反应快、可靠度高、寿命长(SSR的开关次数可达108109次,比一般EMR的106高出百倍)、无动作噪声、耐震、耐机械冲击、具有良好的防潮防霉防腐特性。这些特点使SSR在军事、化工、和各种工业民用电控设备中均有广泛应用。固

9、态继电器的控制信号所需的功率极低,因此可以用弱信号控制强电流。同时交流型的SSR采用过零触发技术,使SSR可以安全地用在计算机输出接口,不会像EMR那样产生一系列对计算机的干扰,甚至会导致严重当机。比较常用的是DIP封装的型式。控制电压和负载电压按使用场合可以分成交流和直流两大类,因此会有DC-AC、DC-DC、AC-AC、AC-DC四种型式,它们分别在交流或直流电源上做负载的开关,不能混用. 按负载电源的类型不同可将SSR分为交流固态继电器(ACSSR)和直流固态继电器(DCSSR)。ACSSR是以双向晶闸管作为开关器件,用来接通或断开交流负载电源的固态继电器。ACSSR的控制触发方式不同,

10、又可分为过零触发型和随机导通型两种。过零触发型ACSSR是当控制信号输入后,在交流电源经过零电压附近时导通,故干扰很小。随机导通型ACSSR则是在交流电源的任一相位上导通或关断,因此在导通瞬间可能产生较大的干扰。 12 工作原理 过零触发型ACSSR为四端器件,其内部电路如图1所示。1、2为输入端,3、4为输出端。R0为限流电阻,光耦合器将输入与输出电路在电气上隔离开,V1构成反相器,R4、R5、V2和晶闸管V3组成过零检测电路,UR为双向整流桥,由V3和UR用以获得使双向晶闸管V4开启的双向触发脉冲,R3、R7为分流电阻,分别用来保护V3和V4,R8和C组成浪涌吸收网络,以吸收电源中带有的尖

11、峰电压或浪涌电流,防止对开关电路产生冲击或干扰。图1 固态继电器内部电路图要指出的是所谓“过零”并非真的必须是电源电压波形的零处,而一般是指在1025V或-(1025)V区域内进行触发,如图2所示。图中交流电压分三个区域,区为-10V+10V范围,称为死区,在此区域中加入输入信号时不能使SSR导通。区为1025V和-(1025)V范围,称为响应区,在此区域内只要加入输入信号,SSR立即导通。区为幅值大于25V的范围,称为抑制区在此区域内加入输入信号,SSR的导通被抑制图2 波形图当输入端未加电压信号时,光耦合器的光敏晶体管因未接收光而截止,V1饱和,V3和V4因无触发电压而截止,此时SSR关闭

12、。当加入输入信号时,光耦合器中的发光二极管发光,光敏晶体管饱和,使V1截止。此时若V3两端电压在-(1025)V或1025V范围内时,只要适当选择分压电阻R4和R5,就可使V2截止,这样使V3触发导通,从而使V 4的控制极上得到从R6URV 3URR7或反方向的触发脉冲,而使V4导通,使负载接通交流电源。而若交流电压波形在图2中的区内时,则因V2饱和而抑制V3和V4的导通,而使SSR被抑制,从而实现了过零触发控制。由于1025V幅值与电源电压幅值相比可近似看作“零”。因此,一般就将过零电压粗略地定义为025V,即认为在此区域内,只要加入输入信号,过零触发型ACSSR都能导通当输入端电压信号撤除

13、后,光耦合器中的光敏晶体管截止,V1饱和,V3截止,但此时V4仍保持导通,直到负载电流随电源电压减小到小于双向晶闸管的维持电流时,SSR才转为截止。 SSR的输出端器件可分为双向晶闸管和两只单向晶闸管反并联形式。若负载为电动机一类的感性负载,则其静态电压上升率dv/dt是一个重要参数。由于单向晶闸管静态电压上升率(200V/s)大大高于双向晶闸管的换向指标(10V/s),因此若采用两只大功率单向晶闸管反并联代替双向晶闸管,一方面可提高输出功率;另一方面也可提高耐浪涌电流的冲击能力,这种SSR称为增强型SSR。1.2、三极管晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。而每一种又有NP

14、N和PNP两种结构形式,但使用最多的是硅NPN和锗PNP两种三极管,(其中,N表示在高纯度硅中加入磷,是指取代一些硅原子,在电压刺激下产生自由电子导电,而p是加入硼取代硅,产生大量空穴利于导电)。两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。对于NPN管,它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极c。当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Eb

15、o。在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正偏,发射区的多数载流子(电子)及基区的多数载流子(空穴)很容易地越过发射结互相向对方扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流了。由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电极电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补给,从而形成了基极电流Ibo.根据电流连续性原理得:Ie=Ib+Ic,这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:1=Ic/Ib 式中:1-称为直流放大倍数,集电极电流的变化量Ic与基极电流的变化量Ib之比为:= Ic/Ib。式中-称为交流电流放大倍数,由于低频时1和的数值相差不大,所以有时为了方便起见,对两者不作严格区分,值约为几十至一百多。三极管是一种电流放大器件,但在实际使用中

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号