《中考数学试题分类汇编:考点10一元二次方程含解析》由会员分享,可在线阅读,更多相关《中考数学试题分类汇编:考点10一元二次方程含解析(22页珍藏版)》请在金锄头文库上搜索。
1、2019届数学中考复习资料中考数学试题分类汇编:考点10 一元二次方程一选择题(共18小题)1(2018泰州)已知x1、x2是关于x的方程x2ax2=0的两根,下列结论一定正确的是()Ax1x2Bx1+x20Cx1x20Dx10,x20【分析】A、根据方程的系数结合根的判别式,可得出0,由此即可得出x1x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1x2=2,结论C错误;D、由x1x2=2,可得出x1、x2异号,结论D错误综上即可得出结论【解答】解:A=(a)241(2)=a2+80,x1x2,结论A正确;
2、B、x1、x2是关于x的方程x2ax2=0的两根,x1+x2=a,a的值不确定,B结论不一定正确;C、x1、x2是关于x的方程x2ax2=0的两根,x1x2=2,结论C错误;D、x1x2=2,x1、x2异号,结论D错误故选:A2(2018包头)已知关于x的一元二次方程x2+2x+m2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A6B5C4D3【分析】根据方程的系数结合根的判别式0,即可得出m3,由m为正整数结合该方程的根都是整数,即可求出m的值,将其相加即可得出结论【解答】解:a=1,b=2,c=m2,关于x的一元二次方程x2+2x+m2=0有实数根=
3、b24ac=224(m2)=124m0,m3m为正整数,且该方程的根都是整数,m=2或32+3=5故选:B3(2018宜宾)一元二次方程x22x=0的两根分别为x1和x2,则x1x2为()A2B1C2D0【分析】根据根与系数的关系可得出x1x2=0,此题得解【解答】解:一元二次方程x22x=0的两根分别为x1和x2,x1x2=0故选:D4(2018绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A9人B10人C11人D12人【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯且一共碰杯55次,即可得出关于x的一元二次方程,解之取其正值即可得出结论【解答】解:
4、设参加酒会的人数为x人,根据题意得: x(x1)=55,整理,得:x2x110=0,解得:x1=11,x2=10(不合题意,舍去)答:参加酒会的人数为11人故选:C5(2018临沂)一元二次方程y2y=0配方后可化为()A(y+)2=1B(y)2=1C(y+)2=D(y)2=【分析】根据配方法即可求出答案【解答】解:y2y=0y2y=y2y+=1(y)2=1故选:B6(2018眉山)若,是一元二次方程3x2+2x9=0的两根,则+的值是()ABCD【分析】根据根与系数的关系可得出+=、=3,将其代入+=中即可求出结论【解答】解:、是一元二次方程3x2+2x9=0的两根,+=,=3,+=故选:C
5、7(2018泰安)一元二次方程(x+1)(x3)=2x5根的情况是()A无实数根B有一个正根,一个负根C有两个正根,且都小于3D有两个正根,且有一根大于3【分析】直接整理原方程,进而解方程得出x的值【解答】解:(x+1)(x3)=2x5整理得:x22x3=2x5,则x24x+2=0,(x2)2=2,解得:x1=2+3,x2=2,故有两个正根,且有一根大于3故选:D8(2018宜宾)某市从2017年开始大力发展“竹文化”旅游产业据统计,该市2017年“竹文化”旅游收入约为2亿元预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为(
6、)A2%B4.4%C20%D44%【分析】设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论【解答】解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=2.2(不合题意,舍去)答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%故选:C9(2018湘潭)若一元二次方程x22x+m=0有两个不相同的实数根,则实数m的取值范围是()Am1Bm1Cm1Dm1【分析】根据方程
7、的系数结合根的判别式0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围【解答】解:方程x22x+m=0有两个不相同的实数根,=(2)24m0,解得:m1故选:D10(2018盐城)已知一元二次方程x2+k3=0有一个根为1,则k的值为()A2B2C4D4【分析】根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程13+k=0,然后解一次方程即可【解答】解:把x=1代入方程得1+k3=0,解得k=2故选:B11(2018嘉兴)欧几里得的原本记载,形如x2+ax=b2的方程的图解法是:画RtABC,使ACB=90,BC=,AC=b,再在斜边AB上截取BD=则该方程的一个正
8、根是()AAC的长BAD的长CBC的长DCD的长【分析】表示出AD的长,利用勾股定理求出即可【解答】解:欧几里得的原本记载,形如x2+ax=b2的方程的图解法是:画RtABC,使ACB=90,BC=,AC=b,再在斜边AB上截取BD=,设AD=x,根据勾股定理得:(x+)2=b2+()2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选:B12(2018铜仁市)关于x的一元二次方程x24x+3=0的解为()Ax1=1,x2=3Bx1=1,x2=3Cx1=1,x2=3Dx1=1,x2=3【分析】利用因式分解法求出已知方程的解【解答】解:x24x+3=0,分解因式得:(x1)(x3)=
9、0,解得:x1=1,x2=3,故选:C13(2018台湾)若一元二次方程式x28x311=0的两根为a、b,且ab,则a2b之值为何?()A25B19C5D17【分析】先利用因式分解法解方程得到a=11,b=3,然后计算代数式a2b的值【解答】解:(x11)(x+3)=0,x11=0或x3=0,所以x1=11,x2=3,即a=11,b=3,所以a2b=112(3)=11+6=17故选:D14(2018安顺)一个等腰三角形的两条边长分别是方程x27x+10=0的两根,则该等腰三角形的周长是()A12B9C13D12或9【分析】求出方程的解,即可得出三角形的边长,再求出即可【解答】解:x27x+1
10、0=0,(x2)(x5)=0,x2=0,x5=0,x1=2,x2=5,等腰三角形的三边是2,2,52+25,不符合三角形三边关系定理,此时不符合题意;等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12故选:A15(2018广西)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A80(1+x)2=100B100(1x)2=80C80(1+2x)=100D80(1+x2)=100【分析】利用增长后的量=增长前的量(1+增长率),设平均每次
11、增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程【解答】解:由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)(1+x)=100或80(1+x)2=100故选:A16(2018乌鲁木齐)宾馆有50间房供游客居住,当毎间房毎天定价为180元时,宾馆会住满;当毎间房毎天的定价每增加10元时,就会空闲一间房如果有游客居住,宾馆需对居住的毎间房毎天支出20元的费用当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元则
12、有()A(180+x20)(50)=10890B(x20)(50)=10890Cx(50)5020=10890D(x+180)(50)5020=10890【分析】设房价定为x元,根据利润=房价的净利润入住的房间数可得【解答】解:设房价定为x元,根据题意,得(x20)(50)=10890故选:B17(2018黑龙江)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A4B5C6D7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x1)场球,第二个球队和其他球队打(x2)场,以此类推可以知道共打(1+2+3+x1)场球,然后根据计划
13、安排15场比赛即可列出方程求解【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=5(不合题意,舍去),则共有6个班级参赛故选:C18(2018眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A8%B9%C10%D11%【分析】设平均每次下调的百分率为x,则两次降价后的价格为6000(1x)2,根据降低率问题的数量关系建立方程求出其解即可【解答】解:设平均每次下调的百分率为x,由题意,得6000(1x)2=4860,解得:x1=0.1,x2=1.9(舍去)答:平均每次下调的百分率为10%故选:C二填空题(共14小题)19(2018扬州)若m是方程2x23x1=0的一个根,则6m29m+2015的值为2018【分析】根据一元二次方程的解的定义即可求出答案【解答】解:由题意可知:2m23m1=0,2m23m=1原式=3(2m23m)+2015=2018故答案为:201820(2018苏州)若关于x的一元二次方程x2+m