自动割草机器人的传感器选择及路径规划简介

上传人:大米 文档编号:487558627 上传时间:2023-06-24 格式:DOCX 页数:9 大小:161.74KB
返回 下载 相关 举报
自动割草机器人的传感器选择及路径规划简介_第1页
第1页 / 共9页
自动割草机器人的传感器选择及路径规划简介_第2页
第2页 / 共9页
自动割草机器人的传感器选择及路径规划简介_第3页
第3页 / 共9页
自动割草机器人的传感器选择及路径规划简介_第4页
第4页 / 共9页
自动割草机器人的传感器选择及路径规划简介_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《自动割草机器人的传感器选择及路径规划简介》由会员分享,可在线阅读,更多相关《自动割草机器人的传感器选择及路径规划简介(9页珍藏版)》请在金锄头文库上搜索。

1、题目自动割草机器人的传感器选择及路径规划简介姓名蔡炳清学号s20110113分院(系) 机能分院专业班级 机械制造及其自动化完成时间 2012 年5 月7 日自动割草机器人的传感器选择及路径规划简介自动割草机器人被广泛应用于家庭庭院草坪的维护、大型草地的 修剪。自动割草机器人的平台融合了运动控制、多传感器融合、路径 规划等技术。1 系统结构 自动割草机器人主控系统的结构框图如下图1所示。系统主要由 单片机控制系统、传感器系统、电机驱动系统3大部分组成。o爹传憋器系统电子 篱芭 传感益光电 开爻 传感器碰撞 开关 传感器水 传感殊倾角 幵姜 传感器1控 搖收榄块It取片机控制系统行动电机藥动割草

2、电机驷动I图L自动割草机器人系统结构运动系统主要通过单片机给出的多蹤WM (脉冲宽度调制)信号对自动割草机器人的行动电机以及割草电机进行控制。传感器系统由电子篱笆传感器、光电开关传感器、碰撞开关传感器、雨水传感器、无线遥控接收模块等组成。其中,电子篱笆传感器用于探测割草区域的边缘;光电开关传感器用于避开慢速的或者静止的障碍物;碰撞开关传感器用于避开快速的或者主动碰向割草机的物体;雨水传感器用于检测下雨天气,并且相应作出回基站的操作;倾角开关传感器用于安全措施,防止自动割草机器人在割草过程 中发生意外事件翻倒,一旦传感器检测的角度超过设定的阈值,系统 自动停止一切工作,进入休眠状态;无线遥控部分

3、用于方便使用者无线控制自动割草机器人,无线遥 控的距离约20 m。各个系统都采用模块化设计,可扩展性高、升级维 护方便、二次开发周期短。表1 为自动割草机器人参数表。表!自动割草机器人参数表组件性能指标移动方式两轮姜动行走,前方一个万向轮电池2个12 V 7 Ah铅蓄电池电子篱芭iO m500 m长度的电子篱芭电拔.电子篱芭岌射基站行动电机驱动颤定驱动电流2 A,电压24 V割草电机驱动MOSFET 动.峰值可达JO A,电压24 V功耗割草平均功率和 筍行动功率駆W2 硬件系统设计主控系统和运动控制系统在此处省略,主要说下传感器系统2.1 电子篱笆感应电路电子篱笆传感器是自动割草机器人最重要

4、的传感器,它可以使割 草机不走出工作区域(由连在基站上的电线围成的区域),这样可以 保证自动割草机器人工作在有效区域。电子篱笆传感器感应的是电子 篱笆所发出的一定频率的脉冲信号,感应线圈在靠近通有交变电流的 电线边界时,会产生特定频率的感应电流,根据检测特定频率下信号 幅度的大小可以得到割草机是否接近边界的信息。电子篱笆传感器在 感应出信号后进行放大、滤波,然后再送入单片机的D输入端口。实 验证明,越是接近电子篱笆边界,感应出给MCU的电压越大,选择一 个合适的阈值进行判断就可以得到割草机的状态。在实际中设定接近 边界还有3cm时感应出的电压大小作为阈值,割草机在接收这个信号 后就会给出相应的

5、处理,如后转弯180然后继续前进。电子篱笆检 测电路图如图3 。便流脉莎电流挥I 3电子篱笆检测电路椎图电子驚笆电线Y感应駕冷输人放大H带雲波感应电流放大后的 特定频峯的整流后的直流电压馆号 电压信号电压信号2.2 倾角开关在割草机运行过程中,有可能因为意外使割草机倾斜或者翻倒 由于割草机底盘有一对高速运行的割草刀片,所以底盘暴露在外面就 会威胁到人或者动物的安全。在车子倾斜到一定角度时,倾角开关就 会给出一个开关信号,单片机根据这个信号关断所有的电机控制信 号,并且进入待机状态,等待操作者手动开机。2.3 碰撞开关碰撞开关是为了让割草机可以躲开光电避障开关检测不到的盲区 障碍物和快速移动物体

6、,是一种被动的避障方式。碰撞开关的原理是在割草机被外物碰撞到前方的一个机械的弹簧结构后,会让一个触点 短路,这样能给单片机一个低电平信号,通知单片机遇到了障碍物 单片机就会执行相应的避障措施。2.4 雨水传感器雨水传感器由一个湿敏电阻和一个比较器组成。在正常工作情况 下,湿敏电阻阻值为1MQ左右,这样可使比较器输出为高(正极电压 (约2.5V)大于负极电压(约2V)。如果有雨水碰到湿敏电阻,则电 阻的阻值会急剧下降到1 KQ左右,比较器输出为低(正极电压(约0 V)小于负极(约2V)。这样就能使单片机得到雨水感应信号,执行回基站避雨的操作。图4为雨水传感器电路图。图4雨水传感器电路BALBAU

7、SiBV-2.5 光电开关避障光电避障是最主要的避障方式,也是一种主动的避障方式。优点 是不用碰到障碍物就可以检测到并且躲开,避免直接碰撞到障碍物。光电开关可检测的距离可以根据实际控制的需要进行调节。2.6 传感器在车体位置上的排布多传感器系统传感器的位置和排布对于控制精度有很大影响, 在借鉴了其他多传感器系统的排布后,设计出本系统的传感器排布 图, 如图5 所示。5传感器的位伫排祁Al、A2、A3、A4都是电子篱笆探头的放置位置。B1和B2是光电 传感器和碰撞开关的安装位置,尽量放在边缘有利于检测障碍物减小 检测的盲区。其中,A3、A4这两个电子篱笆探头主要用于检测前端电 子篱笆区域,如果检

8、测到,执行后退再转向的动作A1、A2则是用于 进入基站时的寻线,因为进入基站的任务是通过首先寻找到边界的电 子篱笆线,然后再切入电子篱笆线中,最后通过寻线的方式一直走入 基站。Al、A2也可以在自动割草时发挥作用,避免割草机走出边界, 特别是在割草区域的边角地带,成为处理边界算法中的一个重要辅助 信号。3 割草路径规划 自动割草机器人路径规划的遍历策略是割草机设计中的一个重 要环节,涉及到割草机割草的效率。合理的遍历策略可以使自动割草 机器人在最短的时间内遍历整个割草区域。常用的割草策略主要有两种方式:直线运行方式和边界跟踪运行方式。两种覆盖区域方式如图7、图8所示。團7直线运行方式图B边界跟

9、踪运行方式采用直线运行时,转向处会有不可避免的重叠路径,使总的运行距离 增加;采用边界跟踪的方式时,需要机器人不断地调整进行方向,容 易带来误差。针对自动割草机器人以单片机为核心的控制器而言,需 要自动割草机器人的运行轨迹尽量简单化和规范化。因此采取直线运 行方式遍历子区间,在前向的电子篱笆传感器感应到边界后割草机 器人后退一小段距离,然后以一个轮子为中心,另一个轮子左转( 或 右转)180,完成掉头,然后继续前进,下次再碰到边界就向相反 的方向旋转180,这样就可以做到区域的覆盖。3.1 割草边界区域的处理方法割草机器人在区域的边角处行走是最容易出现问题的时候,不 合理的行走策略可能导致割草

10、机器人走出边界。所以要利用割草机器 人现有的传感器去选择在区域边角的运行策略。经过实验发现,出 现越界问题的情况主要有两种。(1) 割草机到达边界的一个角落,如图9。在这种情况下割草机器人 传感器A4(或者A3)首先检测到边界L1的信息,根据直线运行方式就 应该先后退再向左转(或向右转)。正常情况下走到这种角落时就应 该是先检测到L1,然后后退一段距离,再向右方向转180。在转弯 的过程中,由于L2的存在,A3就会感应到角落的另外一个边界L2,如果没有特别的策略,就会执行先后退一段距离,再向左 转180的策略 这样就很容易走出边界,或者使控制变得混乱。要避 免这种情况就需要在软件上做出改动,即在转弯过程中如果有其他传 感器检测到边界,就说明已经到了另一个边界角落的位置。最好的处 理方法就是原路回转过去,回到原位后再次左转180,开始从这个 区域的顶端到另外一端的循环行走遍历。(2) 割草机遇到了一个倾斜的边界,如图10。如果没有特殊的策略, A4 检测到边界后,就执行转向的策略,这样就会有很大一片的前方 区域(区域一)不能遍历到,所以就需要利用右边的A2去解决这个问 题。在正常行走时,如果A2首先检测到了边界,则执行先后退、然 后左拐一定的角度、最后前进的策略。自动割草机器人就会沿着这根 斜线边界不断调整自己的角度前进,而不会漏掉这些区域,适用于边 界不是很规则的草地。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号