电力电子技术在高压领域应用概况

上传人:cl****1 文档编号:487316925 上传时间:2023-06-29 格式:DOC 页数:12 大小:56KB
返回 下载 相关 举报
电力电子技术在高压领域应用概况_第1页
第1页 / 共12页
电力电子技术在高压领域应用概况_第2页
第2页 / 共12页
电力电子技术在高压领域应用概况_第3页
第3页 / 共12页
电力电子技术在高压领域应用概况_第4页
第4页 / 共12页
电力电子技术在高压领域应用概况_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《电力电子技术在高压领域应用概况》由会员分享,可在线阅读,更多相关《电力电子技术在高压领域应用概况(12页珍藏版)》请在金锄头文库上搜索。

1、电力电子技术在高压领域应用概况(一)电力电子技术在电力传输系统及在高压电器中的应用已十分广泛,已经显示出它越来越重要的作用。这里所说的 高压”应在6KV以上。主要应用领域为:1、高压交、直流输电;2、静止型动态无功补偿装置SVC;3、高压电机软启动;4、高压直流电源及高压变频;一、高压交、直流输电现代电子技术、控制技术、计算机技术等与传统电力技术的融合产生了发展 前景广阔的电力电子技术。电力电子技术在高压直流输电(HVDC)、静止无功补偿器(SVC)等领域已有广泛的应用。八十年代后期,为了充分利用已有的输电设 备、有效地控制系统潮流分布、提高对电力系统稳定性的控制能力,提出了 灵 活交流输电技

2、术(FACTS)并得到了很快发展,FACTS装置的目的都是通过利用 大功率电力电子器件的快速响应能力, 实现对电压、有功潮流、无功潮流等的平 滑控制,从而在不影响系统稳定性的前提下, 提高系统传输功率能力,改善电压 质量,达到最大可用性、最小损耗、最小环境压力、最小投资和最短的建设周期 的目标。可控串补(TCSC)、新型无功发生器(STATCOM)、统一潮流控制器(UPFC) 等工业样机相继投运。九十年代中期,为解决日益突出的电能质量问题,国外又 提出了定制电力(Custom Power)技术,即把电力电子技术用在配电领域。属于 这类技术的新型电力设备,如配电用新型静止无功补偿器(DSTATC

3、OM)、动态电压恢复器(DVR)、静止开关(SSB)等也相继投运。我国对电力电子技术的研究 经过40多年的努力,特别是近十多年的迅速发展,在部分领域已经初步形成了 分析研究、试验仿真、设备制造、系统集成的能力,但整体技术与国际先进水平 相比还有较大的差距。我国电网现状迫切需要上述各项技术,因为: 我国电网面临的主要问题应该是大幅度提高电网的大容量、远距离输电 能力。其次,要增强电网的安全可靠性以及改善电能质量;再次,经济性和环境问题。然而,当前要实现大规模输电面临诸多技术困难;大区电网强互联的格局尚未形成;电网建设滞后,瓶颈增多,威胁电网安全;取得线路走廊和变电站站址 日益困难。这些已成为当前

4、亟待解决的关键问题。 电压稳定问题日益突出。以京沪穗电网为例,我国大型负荷中心存在的 主要问题是:电厂少,使得动态无功支撑日益不足 ;恒定功率负荷递增,不利于 电压的恢复,从而引起电压稳定问题。全国电网联网后,形成总装机容量超过1.4亿千瓦,南北距离超过4600 公里的超大规模同步的交流系统。目前,整个互联电网的稳定问题比较突出。 联 网后局部故障(事故)影响范围扩大,将可能波及邻近电网,在某些情况下可能诱 发恶性连锁反应。可能造成整个电网动态品质的恶化。 增加了电网运行安全控制 的复杂程度。先进电力电子技术是将大功率电力电子开关器件的制造技术、现代控制技术和传统电网技术实现了有机的融合,已经

5、成为超高压直流输电、灵活交流输电、 大容量抽水蓄能电站、短路电流限制、节能降耗等现代电网技术和装备的核心。 它主要包括直流输电(HVDC)技术、柔性(灵活)交流输电(FACTS)和定制电力技 术(Custom Power)。可以预计,这几项技术的发展将会导致电力系统发生革命 性的变化,大幅度提高输电线路的输送能力和电力系统的安全稳定水平,大大提高系统的可靠性、运行灵活性。1、高压直流输电(HVDC)技术高压直流输电的应用场合归纳以下两大类: 在不同频率的联网、因稳定问题而难以采用交流、远距离电缆输电等, 这些技术上交流输电难以实现而只能采用直流输电的场合。在技术上两种输电方式均能实现,但直流比

6、交流的技术经济性能好。自1954年瑞典哥特兰的世界上第一项高压直流输电工程投运以来,高压直 流输电技术已随着电力电子技术的突飞猛进而飞速发展,直流输电具有输电容量大、稳定性好、控制调节灵活等优点,对于远距离输电、海底电缆输电及不同 频率系统的联网,高压直流输电拥有独特的优势。已作为高压交流输电技术的有 力补充而在全世界广泛应用。我国幅员辽阔,西电东送、南北互供的电网发展战 略目前全世界众多直流输电工程中具有代表性的工程有:?巴西伊泰普直流输电工程(Itaipu HVDC transmission project),世界上已 建成投运的输电电压最高(50kV)、输送功率最大(6000MW)的直流

7、输电工程。?魁北克一新英格兰直流输电工程(Quebec New England HVDC transmission project),世界上最大的多端(5个换流站)直流输电工程。我国的直流输电工程发展迅速,已投入运行的大型工程有:?葛洲坝一上海直流输电工程(1990年)00kV,1200MW,1064km。它 既是我国第1条长距离大容量高压直流输电线路,又是区域电网直流互联工程。 中国电力从此进入交直流混合输电的时代。?三峡一常州直流输电工程第1条从三峡左岸至江苏常州,500kV , 3000MW , 890km,第2条从三峡右岸至上海地区,额定容量3 GW ,额定电压 芳00 kV ,送电距

8、离1 000 km。?三峡一广州直流输电工程(2004年)00kV,3000MW,962km直流输电已是成熟技术,造价较高是其与交流输电竞争的不利因素。新一代的直流输电是指进一步改善性能、大幅度简化设备、减少换流站的占地、降低造 价的技术。直流输电性能创新的典型例子是轻型直流输电系统 (Light HVDC),它 采用GTO、IGBT等可关断的器件组成换流器,省去了换流变压器,整个换流站 可以搬迁,可以使中型的直流输电工程在较短的输送距离也具有竞争力,从而使中等容量的输电在较短的输送距离也能与交流输电竞争。此外,可关断的器件组成换流器,由于采用可关断的电力电子器件,可以免除换相失败,对受端系统

9、的 容量没有要求,故可用于向孤立小系统(海上石油平台、海岛)的供电。轻型直流 输电系统(Light HVDC)应用脉宽调制技术进行无源逆变,解决了用直流输电向无 交流电源的负荷点送电的问题。今后还可用于城市配电系统,并用于接入燃料电 池、光伏发电等分布式电源。2、柔性(灵活)交流输电(FACTS)技术随着电力电子元件单件容量向大功率及高电压的迅速发展,出现了一类为适 应电力系统向远距离、大容量送电,需要对其参数实施快速控制的设备 一柔性交 流传输设备(Flexible ACT ran smission Systems ,简称为 FACTS) , FACTS 技术的概念问世于20世纪80年代后期

10、,是一项基于电力电子技术与现代控制技 术,对交流输电系统的实施灵活快速调节的输电技术。它是利用大功率电力电子器件的快速响应能力,实现对电压、阻抗、相位、有功潮流、无功潮流等的平滑 控制。在不影响系统稳定性的前提下,提高系统传输功率能力、增大送电容量, 改善电压质量,达到最大可用性、最小损耗的目标。FACTS提高了交流电网运行可控性,增强其抗御事故的能力。FACTS技术经历了三个发展阶段,第一代 FACTS技术,如可控串补 (TCSC)、静止无功补偿器(SVC)等是基于自换相的半控器件(如晶闸管)的 FACTS装置,第二代、第三代FACTS装置都是基于可关断器件 GTO、IGBT、 IGCT等组

11、成的变流器,包括静止无功发生器(STATCOM)、静止同步串联补偿 器(SSSC)、统一潮流控制器(UPFC)和相间功率控制器(IPFC)等。据日本研究,对于跨距150 km的输电系统,热容量极限为6 600 MW ,常 规送电额定容量为3 700MW ,装设FACTS设备后,不仅提高了系统的稳定性 及可靠性,而且可使送电容量增加到4 500MW。与新建线路相比,FACTS设备 投资及安装费用少,还有利于环境保护。新研制成功并应用于纽约电力系统中的转换静止补偿器(CSC),证明FACTS功能已从单个输电的控制器间接作用于全电网”的阶段,进入了 直接控 制多回输电更有效地作用于全电网”阶段。如果

12、在三峡升压变电站和出线上安装 大功率CSC,可瞬时控制向多个方向输送的功率,从而快速控制大电网。FACTS 装置在未来输配电系统中抗拒大事故发生及其连锁发展中具有更有效的作用。尽管柔性交流输电技术已在多个输电工程中得到应用,并证明了它在提高线路输送能力、阻尼系统振荡、快速调节系统无功、提高系统稳定等方面的优越性 能,但其推广应用的进展步伐比预期的要慢。主要原因之一是工程造价比常规的解决方案高,因此,只有在常规技术无法解决的情况下,用户才会求助于FACTS 技术;另外,FACTS技术还需要进一步完善。目前 FACTS技术的应用还局限于 个别工程,如果大规模应用FACTS装置,还要解决一些全局性的

13、技术问题,例 如:多个FACTS装置控制系统的协调配合问题,FACTS装置与已有的常规控 制、继电保护的衔接问题,FACTS控制纳入现有的电网调度控制系统问题等等。 随着电力电子器件的性能提高和造价降低,以电力电子器件为核心部件的 FACTS装置的造价会降低,在不久的将来会比常规的输配电方案更具竞争力。3、定制电力(Custom Power)技术定制电力是指将电力电子装置或称静态控制器,用于1kV到35kV的配电系统,以向对电能质量敏感的用户所提供的电力达到用户所需可靠性水平和电能质 量水平。定制电力设备(或称控制器)采用先进的大功率可关断电力电子器件(如 IGBT、IGCT、IEGT等)和数

14、字信号处理器(DSP)测控技术,来实现对供电电压 的动态调节和补偿。定制电力技术(CP,Custom Power)主要用于配电系统故又 称为配电灵活交流输电(DFACTS)技术。定制电力技术所要解决的问题主要是电网中普遍存在的电压跌落”电能质量调查显示:在所有配电系统事故中,电压跌落占70%-80%;而在输电系统事故 中,电压跌落所占的比例超过 96%。定制电力技术所解决的电能质量问题主要 源于电力系统故障,其受影响的用户往往对电能质量和供电可靠性较一般用户有 更高的要求。一次电能质量事故将导致严重的经济损失或重大的社会影响。目前在欧美各国对电压跌落的关注程度比其它有关电能质量问题的关注程度要

15、大得 多,在我国,随着社会经济的发展,电压跌落和短时断电的影响也逐渐引起了供 电公司、用户及制造厂商的关注,特别是在一些高科技园区、大型医院、电信、 银行、军工和重要的政府部门等。自二十世纪八十年代末,国外便开始了定制电力技术措施的专题研究,并陆续地推出了相应的固态切换开关(STS)、静态电压调整器(SVR)、静态串联补偿 器(SSC)、配电无功发生器(DSTATCOM)等产品化装置,并进行能量储存技术、 静态电压调整技术、故障电流限制器、有源滤波及统一电能质量调节器(UPQC)等技术的研发和工程示范。这些技术的应用电压等级均为 6&O1566;35kV。其中, STS的最大短路电流达25kA

16、,响应时间小于1个周波,最大容量达6.9MVA;SSC 的响应时间小于1/4周波,最大容量达10MVA,采用电容器或超导储能QSTATCOM的响应时间小于1/4周波,最大容量达20MVA,采用电容储能。其中应用晶闸管阀体为主要部件的串联补偿(SSC)主要针对源自配电系统 的电压骤降和突升。编后语本文未就对 高压直流电源及咼压变频”进行讨论。因咼压直流电源范围很 宽、原理各异,拟另文讨论。高压变频器就目前来看属低压变频器输出串联,为 另一设计思路。应该说明本文是汇集了若干相关报道文章精华, 重新编写的摘要汇编,以便 需要者能一目了然” 了解概貌。在此顺向原报道者致谢!电力电子技术在高压领域应用概况(二)一、静止型动态无功补偿装置SVC1,当前电网存在的问

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 活动策划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号