基于STC12C5A60S2单片机数字电压表的设计

上传人:工**** 文档编号:481969072 上传时间:2023-02-05 格式:DOC 页数:27 大小:1.47MB
返回 下载 相关 举报
基于STC12C5A60S2单片机数字电压表的设计_第1页
第1页 / 共27页
基于STC12C5A60S2单片机数字电压表的设计_第2页
第2页 / 共27页
基于STC12C5A60S2单片机数字电压表的设计_第3页
第3页 / 共27页
基于STC12C5A60S2单片机数字电压表的设计_第4页
第4页 / 共27页
基于STC12C5A60S2单片机数字电压表的设计_第5页
第5页 / 共27页
点击查看更多>>
资源描述

《基于STC12C5A60S2单片机数字电压表的设计》由会员分享,可在线阅读,更多相关《基于STC12C5A60S2单片机数字电压表的设计(27页珍藏版)》请在金锄头文库上搜索。

1、基于STC12C5A60S2单片机数字电压表的设计 专业班级:电子信息工程二班学号:xxx 姓名:xxx 指导教师:xxx基于STC12C5A60S2单片机数字电压表的设计实训目的:1、对安全用电知识的基本了解 1) 了解一般情况下对人体的安全电流和电压,了解触电事故的发生原因及安全用电的原则。2) 掌握用电安全操作技术。3) 培养严谨的科学作风和良好的工作作风。2、常用工具的基本使用1) 了解常用电工电子工具的用途、规格;2) 掌握常用电工电子工具的使用方法和注意事项。3 、数字电压表的组装1) 了解电路的原理,掌握数字电压表的作用。2) 注意安全,先接线,在通电。4、一般室内电气线路的安装

2、1) 了解室内电路的原理,掌握各个元件的作用。2) 注意电器间的连接,注意安全。3) 增强动手、合作能力。5、常用电子仪器的使用1) 了解直流稳压电源、万用表、信号发生器、示波器等常用电子仪器的功能。2) 掌握直流稳压电源、万用表、信号发生器、示波器的基本操作方法,为后续实习打下基础。 6、常用电子元器件的认识和检测1) 通过实物认识各种常用的电子元器件。2) 掌握常用电子元器件参数的识读方法。3) 掌握使用万用表测量常用电子元器件参数的方法。4) 通过简单的实验,了解常用电子元器件的功能。7、常用工具的使用(二)1) 了解常用电工电子工具的用途、规格;2) 掌握常用电工电子工具的使用方法和注

3、意事项。8、焊接工艺焊接训练1) 掌握焊接工艺的方法,了解焊接工具的原理。2) 安全用电和注意事项9、电子整机产品装配(数字电压表的制作)1) 掌握数字电压表的电路原理、元件的作用。2) 学会检测各个元件的好坏、3) 独立动手能力10、印制电路板(PCB)的制作1) 了解印制电路板的功能和种类。2) 了解PCB板的快速制作方法。3) 简单了解专业电路板厂PCB板制作的流程和工艺。11、电路组装及调试1) 了解热转印法制作PCB板的工艺流程;2) 掌握使用热转印法来制作PCB板的技能。实训时间、地点:第十七周,第十八周工程训练中心实训内容: 第1章 引言在电量的测量中,电压、电流和频率是最基本的

4、三个被测量,其中电压量的测量最为经常。而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。由于数字式仪器具有读数准确方便、精度高、误差小、测量速度快等特而得到广泛应用。 传统的指针式刻度电压表功能单一,精度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需要。采用单片机的数字电压表,将连续的模拟量如直流电压转换成不连续的离散的数字形式并加以显示,从而精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC实时通信。数字电压表是诸多数字化仪表的

5、核心与基础。以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表。目前,由各种单片机和A/D转换器构成的数字电压表作全面深入的了解是很有必要的。目前,数字电压表的内部核心部件是A/D转换器,转换的精度很大程度上影响着数字电压表的准确度,因而,以后数字电压表的发展就着眼在高精度和低成本这两个方面。本文是以简易数字直流电压表的设计为研究内容,本系统主要包括三大模块:转换模块、数据处理模块及显示模块。第2章 系统总体方案设计选择与说明2.1 设计要求1、增强型MCS-51系列单片机STC12C5A60S2为核心器件,组成一个简单的直流数字电压表。2、采用1路模拟量输入

6、,能够测量0-10V之间的直流电压值。3、电压显示采用数码管显示。 4、尽量使用较少的元器件。2.2 设计思路1、根据设计要求,选择STC12C5A60S2单片机为核心控制器件。2、A/D转换采用STC12C5A60S2内部自带A/D实现。3、电压显示采用共阳数码管。2.3 设计方案硬件电路设计由7个部分组成:STC12C5A60S2单片机系统,数码管显示系统、时钟电路、复位电路档位调节电路以及测量电压输入电路。硬件电路设计框图如图1所示。 时钟电路 测量电压输入入数码管显示STC12C5A60S2 P1 P0 P2 P2 P0复位电路 图2.1 数字电压表系统硬件设计框图第3章 硬件电路设计

7、3.1 STC12C5A60S2单片机3.1.1 STC12C5A60S2单片机 图3.1.1 STC12C5A60S2单片机引脚图及实物图3.1.2 STC12C5A60S2系列单片机主要性能1)高速:1个时钟/机器周期,增强型8051内核,速度比普通8051快612倍。2)宽电压:5.53.3V,2.23.6V(STC12LE5A60S2系列)。3)增加第二复位功能脚/P4.6(高可靠复位,可调整复位门槛电压,频率12MHz时,无需此功能)。4)增加外部掉电检测电路/P4.6,可在掉电时,及时将数据保存进EEPROM,正常工作时无需操作EEPROM。5)低功耗设计:空闲模式(可由任意一个中

8、断唤醒)。6)低功耗设计:掉电模式(可由外部中断唤醒),可支持下降沿/上升沿和远程唤醒。7)支持掉电唤醒的管脚: INT0/P3.2,INT1/P3.3,T0/P3.4,T1/P3.5,RxD/P3.0,CCP0/P1.3(或P4.2),CCP1/P1.4(或P4.3),EX_LVD/P4.6。8) 工作频率:035MHz,相当于普通8051:0420MHz。9) 时钟:外部晶体或内部RC振荡器可选,在ISP下载编程用户程序时设置。10) 8/16/20/32/40/48/52/56/60/62K字节片内Flash程序存储器,擦写次数10万次以上。11) 1280字节片内RAM数据存储器。12

9、) 芯片内EEPROM功能,擦写次数10万次以上。13) ISP / IAP,在系统可编程/在应用可编程,无需编程器/仿真器。14) 8通道,10位高速ADC,速度可达25万次/秒,2路PWM还可当2路D/A使用。15) 2通道捕获/比较单元(PWM/PCA/CCP),也可用来再实现2个定时器或2个外部中断(支持上升沿/下降沿中断)。16) 4个16位定时器,兼容普通8051的定时器T0/T1,2路PCA实现2个定时器。17) 可编程时钟输出功能,T0在P3.4输出时钟,T1在P3.5输出时钟,BRT在P1.0输出时钟。18) 硬件看门狗(WDT)。19) 高速SPI串行通信端口。20) 全双

10、工异步串行口(UART),兼容普通8051的串口。21) 通用I/O口(36/40/44个),复位后为: 准双向口/弱上拉(普通8051传统I/O口)。可设置成四种模式:准双向口/弱上拉,推挽/强上拉,仅为输入/高阻,开漏。每个I/O口驱动能力均可达到20mA,但整个芯片最大不得超过120mA。3.1.3 STC12C5A60S2系列单片机的A/D转换器的结构STC12C5A60S2系列单片机的A/D转换口在P1口(P1.7-P1.0),有8路10位高速A/D转换器,速度可达到250KHz(25万次/秒)。8路电压输入型A/D,可做温度检测、电源电压检测、按键扫描、频谱检测等。上电复位后P1口

11、为弱上拉型I/O口,用户可以通过软件设置将8路中的任何一路设置为A/D转换,不需作为A/D使用的I/O口可以继续作为I/O口使用。STC12C5A60S2系列单片机ADC的结构如下图所示图3.1.2 STC12C5A60S2系列单片机ADC的结构图3.1.3 当AUXR.1/ADRJ=0时,A/D转换结果寄存器格式图3.1.4 当AUXR.1/ADRJ=1时,A/D转换结果寄存器格式STC12C5A60S2系列单片机ADC由多路选择开关、比较器、逐次比较寄存器、10位ADC转换寄结果存器(ADC_RES和ADC_RESL)以及ADC_CONTR构成。STC12C5A60S2系列单片机的ADC是

12、逐次比较型ADC,逐次比较型ADC由一个比较D/A转换器构成,通过逐次比较逻辑,从最高位(MSB)开始,顺序地对每一输入电压与内置D/A转换器输出比较,经过多次比较,使转换所得的数字量逐次比逼近输入模拟量对应值。逐次比较型A/D转换器具有速度高,功耗低等特点。从上图可以看出,通过模拟多路开关,将通过ADC0-ADC7的模拟量输入送给比较器。用数/模转换器(DAC)转换的模拟量与本次输入的模拟量通过比较器进行比较,将比较结果保存到逐次比较器,并通过逐次比较寄存器输出转换结果。A/D转换结束后,最终的转换结果保存到ADC转换结果寄存器ADC_RES和ADC_RESL,同时,置位ADC控制寄存器AD

13、C_CONTR中的A/D转换结束标志位ADC_FLAG,以供程序查询或发出中断申请。模拟通道的选择控制由ADC控制寄存器ADC_CONTR中的CHS2CHS0确定。ADC的转换速度由ADC控制寄存器中的SPEED1和SPEED0确定。在使用ADC之前,应先给ADC上电,也就是置位ADC控制寄存器中的ADC_POWER位。当ADRJ=0时,如果取10位结果,则按下面公式计算:10-bitA/D Conversion Result:(ADC_RES7:0,ADC_RESL1:0)=1023*Vin/Vcc当ADRJ=0时,如果取8位结果,则按下面公式计算:8-bitA/D Conversion R

14、esult:(ADC_RES7:0)=255*Vin/Vcc当ADRJ=1时,如果取10位结果,则按下面公式计算:10-bitA/D Conversion Result:( ADC_RESL1:0 ,ADC_RES7:0)=1023*Vin/Vcc当ADRJ=1时,如果取8位结果,则按下面公式计算:8-bitA/D Conversion Result:( ADC_RESL1:0 ,ADC_RES7:2)=255*Vin/Vcc式中,Vin为模拟输入电压,Vcc为单片机实际工作电压,用单片机工作电压作为模拟参考电压。3.1.4 与A/D 转换相关的寄存器及说明与STC12C5A60S2系列单片机A/D转换相关的寄存器表3.1.1 A/D转换相关的寄存器1.P1口模拟功能控制寄存器P1ASFSTC12C5A60S2系列单片机的A/D转换通道与P1(P1.7-P1.0)复用,上电复位后P1为弱上拉型I/O口,用户可以通过将8路中的如何一路设置为A/D转换,不需作为A/D使用的P1口可继续作为I/O口使用(建议只作为输入)。需作为A/D使用的口需要先将P1ASF特殊功能寄存器中的相应位置为“1”,将相应的口设置为模拟功能。P1ASF寄存器的格式如下:P1ASF:P1口模拟功能控制寄存器(只读)表3.1.2 P1ASF寄存器当P1口中的

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号