分布式驱动电动车转矩控制研究(info提交版)

上传人:s9****2 文档编号:474512336 上传时间:2023-03-08 格式:DOCX 页数:79 大小:3.29MB
返回 下载 相关 举报
分布式驱动电动车转矩控制研究(info提交版)_第1页
第1页 / 共79页
分布式驱动电动车转矩控制研究(info提交版)_第2页
第2页 / 共79页
分布式驱动电动车转矩控制研究(info提交版)_第3页
第3页 / 共79页
分布式驱动电动车转矩控制研究(info提交版)_第4页
第4页 / 共79页
分布式驱动电动车转矩控制研究(info提交版)_第5页
第5页 / 共79页
点击查看更多>>
资源描述

《分布式驱动电动车转矩控制研究(info提交版)》由会员分享,可在线阅读,更多相关《分布式驱动电动车转矩控制研究(info提交版)(79页珍藏版)》请在金锄头文库上搜索。

1、分布式驱动电动汽车转矩控制研究申请清华大学工学硕士学位论文培养单位:汽车工程系学 科:动力工程与工程热物理研 究 生:马 良 峰指导 欧阳明高 教 授二一六年五月86 / 97Research on the Torque Control for Distributed Drive Electric VehicleThesis Submitted toTsinghua Universityin partial fulfillment of the requirementfor the degree ofMaster of ScienceinPower Engineering & Engineer

2、ing ThermophysicsbyMa LiangfengThesis Supervisor:Professor Ouyang MinggaoMay,2016摘要发展电动汽车已经成为应对交通领域的能源安全问题与空气污染问题的共同选择.在各类电动汽车中,分布式电驱动被认为是纯电驱动汽车的前沿技术,在动力性和能效方面具有很大的潜力.分布式电驱动系统具有控制灵活、响应快的优势,同时也带来了相应的研究热点问题,比如各个驱动轮的转矩应该如何控制,才能使电动汽车的能效和动态性能得到优化?本课题围绕能效优化和动态响应控制优化两个问题展开研究.在以能效优化为目标的转矩控制方面,目前大多研究是采用基于模型的

3、算法,需要电机等部件的大量测试标定模型,本文采用了一种基于黄金比例搜索算法的前后轴转矩分配策略,可实现在驱动系统性能参数不确定情况下的在线实时转矩最优分配.但该算法的主要问题是搜索过程中的转矩波动问题,针对这一问题,本课题在其基础上提出了最优分配系数自动标定算法,可实现优化分配系统的自动标定,解决了实时搜索算法的转矩波动问题.在分布式驱动电动汽车动力系统动态响应控制优化方面,主要内容是针对轮毂电机驱动系统对外界突变载荷激励敏感,路面条件变化时抖动剧烈的情况,提出了电子转动惯量算法,从算法层面模拟实际转动惯量的作用,在不增加汽车簧下质量的情况下降低了轮毂电机驱动系统对外界激励的敏感性,并通过转矩

4、补偿算法,解决了车辆目标加速性能下降的问题.课题搭建了Matlab/Simulink和Carsim联合仿真平台,在此平台上对提出的转矩分配算法和转矩动态响应控制算法的功能进行了仿真验证.结果表明:在NEDC工况和中国乘用车典型城市工况下,采用最优分配系数自动标定算法,可以相比转矩平均分配分别节能12.5%和7.4%;采用电子转动惯量算法,可以有效缓和在不良路面上行驶时车轮转速的大幅波动.为了验证以上研究成果在工程上应用的可行性,分别搭建了基于xPC和控制器的硬件在环仿真平台.应用自动代码生成技术,将算法模型转化成控制器可执行代码并移植到KPV13快速原型控制器中进行测试,结果证明实车控制系统的

5、运算和通讯能力能够满足实时搜索算法的要求,上述控制算法在实际控制系统中可用.关键词:分布式驱动;轮毂电机;转矩分配;自动标定;动态响应控制AbstractDeveloping electric vehicles has bee a mon solution for the energy security problem and air pollution. In the field of electric vehicles, distributed drive is considered to be one of the cutting-edge technologies. It has ad

6、vantages of flexible control, fast response and has shown great potential in terms of dynamic performance and energy saving, at the same time it has also brought some hotspot problems, such as torque distribution between drive wheels and dynamic control of each drive wheel. This thesis focuses on en

7、ergy efficiency and dynamic response optimization of distributed drive electric vehicles.In terms of optimizingenergy efficiency, most of existing researches for torque distribution are based on models, which means the control algorithm needs eitheraccurate models of target vehicle or large quantiti

8、es of calibration data. In this thesis, a torque distribution method based on golden ratio search algorithm is adopted, which can realize optimized torque distribution between front and rear axles while dont need any target models. However, the main problem of this method is torque ripple in the pro

9、cess of searching. In order to solve this problem, an automatic calibration method of optimized torque distribution is proposed, which can solve the torque ripple problem successfully. In terms of dynamic response optimization, in-wheel-drive systems sensitivity to external impulses is mainly consid

10、ered.A novel method called electronic inertia is designed to realize the same function of mechanical inertia to reduce the systems sensitivity while add no unsprung mass to the vehicle. A torque pensator is designed to solve the acceleration reduction problem due to the electronic inertia.A joint si

11、mulation platform between Matlab/Simulink and Carsim has been set up to verify the function of automatic calibration method of optimized torque distribution and electronic inertia method. Results show that with the proposed torque distribution method, up to 12.5% of energy can be saved in NEDC cycle

12、 and 7.4% of energy can be saved in Chinas typical cycle of city passenger cars. With the electronic inertia method, wheel vibration when driving off-road can be effectively mitigated.To further verify the feasibility of the proposed torque control methods in real application, two kinds of HIL simul

13、ation platforms are set up. One is based on Matlab xPC platform, the other is based on munication between two controllers. With automatic code generation technology, algorithm models in Simulink are translated into executable code and downloaded to KPV13 rapid prototyping controller. The controller

14、is tested in both of the two HIL simulation platforms. Results show that operation and munication speed of real control systems can satisfy the requirement of real-time search algorithm, the proposed control method can be applied in real control systems.Key words: Distributed drive; in-wheel-motor;

15、torque distribution; automatic calibration; dynamic response control目录第1章引言11.1课题背景与选题意义1研究背景11.1.2 分布式电驱动系统21.1.3 分布式驱动微型平台车项目41.1.4 选题与意义41.2 相关领域的研究现状综述61.2.1 分布式驱动电动汽车转矩分配研究61.2.2 电动汽车动力系统转矩动态响应控制研究91.3 课题的主要研究内容和方法101.4 本文结构11第2章分布式驱动电动汽车联合仿真建模方法研究122.1 本章引言122.2 Matlab/Simulink与Carsim联合仿真平台122.3 Carsim车辆模型132.3.1 车辆基本参数设置142.3.2 轮胎模型142.3.3 对标动力系统模型152.3.4 电机模型172.4 本章小结21第3章分布式电驱动系统转矩分配算法优化223.1 本章引言223.2 直行工况下效率最优的转矩分配策略223.2.1 黄金比例搜索算法概述233.2.2 永磁同步电机转矩分配综合效率的凸特性校验253.2.3 黄金比例搜索算法的实现与联合仿真263.2.4 最优分配系数自动标定算法293.3 转弯工况下效率最优的转矩分配策略373.3.1 低转速下永磁同步电机效率模型简化373.3.2 效率最优的转矩分配策略制定383.

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号