南平汽车传感器项目可行性研究报告【参考范文】

上传人:pu****.1 文档编号:470394915 上传时间:2023-12-06 格式:DOCX 页数:110 大小:112.61KB
返回 下载 相关 举报
南平汽车传感器项目可行性研究报告【参考范文】_第1页
第1页 / 共110页
南平汽车传感器项目可行性研究报告【参考范文】_第2页
第2页 / 共110页
南平汽车传感器项目可行性研究报告【参考范文】_第3页
第3页 / 共110页
南平汽车传感器项目可行性研究报告【参考范文】_第4页
第4页 / 共110页
南平汽车传感器项目可行性研究报告【参考范文】_第5页
第5页 / 共110页
点击查看更多>>
资源描述

《南平汽车传感器项目可行性研究报告【参考范文】》由会员分享,可在线阅读,更多相关《南平汽车传感器项目可行性研究报告【参考范文】(110页珍藏版)》请在金锄头文库上搜索。

1、泓域咨询/南平汽车传感器项目可行性研究报告目录第一章 行业发展分析6一、 成本性能或为要素,技术演进推动格局6二、 发射模块:VCSEL易于集成功率密度低,FMCW光源处于发展期8第二章 项目背景、必要性11一、 智能驾驶为主要驱动力,市场空间广阔11二、 下游应用市场主要包括智能驾驶、服务型机器人和测绘等领域14三、 扫描模块:全固态处于发展期,有望推动成本下行16四、 全面融入重要节点重要通道建设19五、 项目实施的必要性19第三章 绪论21一、 项目名称及项目单位21二、 项目建设地点21三、 可行性研究范围21四、 编制依据和技术原则21五、 建设背景、规模23六、 项目建设进度24七

2、、 环境影响24八、 建设投资估算24九、 项目主要技术经济指标25主要经济指标一览表25十、 主要结论及建议27第四章 建设规模与产品方案28一、 建设规模及主要建设内容28二、 产品规划方案及生产纲领28产品规划方案一览表28第五章 项目选址31一、 项目选址原则31二、 建设区基本情况31三、 持续打造一流营商环境34四、 构建生态产业化产业生态化经济新体系34五、 项目选址综合评价37第六章 SWOT分析说明38一、 优势分析(S)38二、 劣势分析(W)40三、 机会分析(O)40四、 威胁分析(T)41第七章 发展规划49一、 公司发展规划49二、 保障措施50第八章 项目节能说明

3、53一、 项目节能概述53二、 能源消费种类和数量分析54能耗分析一览表55三、 项目节能措施55四、 节能综合评价56第九章 项目进度计划58一、 项目进度安排58项目实施进度计划一览表58二、 项目实施保障措施59第十章 原辅材料供应及成品管理60一、 项目建设期原辅材料供应情况60二、 项目运营期原辅材料供应及质量管理60第十一章 工艺技术方案61一、 企业技术研发分析61二、 项目技术工艺分析63三、 质量管理65四、 设备选型方案66主要设备购置一览表66第十二章 投资计划68一、 投资估算的编制说明68二、 建设投资估算68建设投资估算表70三、 建设期利息70建设期利息估算表70

4、四、 流动资金71流动资金估算表72五、 项目总投资73总投资及构成一览表73六、 资金筹措与投资计划74项目投资计划与资金筹措一览表74第十三章 经济效益及财务分析76一、 基本假设及基础参数选取76二、 经济评价财务测算76营业收入、税金及附加和增值税估算表76综合总成本费用估算表78利润及利润分配表80三、 项目盈利能力分析80项目投资现金流量表82四、 财务生存能力分析83五、 偿债能力分析83借款还本付息计划表85六、 经济评价结论85第十四章 项目招标及投标分析86一、 项目招标依据86二、 项目招标范围86三、 招标要求86四、 招标组织方式87五、 招标信息发布90第十五章 项

5、目风险防范分析91一、 项目风险分析91二、 项目风险对策93第十六章 总结96第十七章 附表98营业收入、税金及附加和增值税估算表98综合总成本费用估算表98固定资产折旧费估算表99无形资产和其他资产摊销估算表100利润及利润分配表100项目投资现金流量表101借款还本付息计划表103建设投资估算表103建设投资估算表104建设期利息估算表104固定资产投资估算表105流动资金估算表106总投资及构成一览表107项目投资计划与资金筹措一览表108第一章 行业发展分析一、 成本性能或为要素,技术演进推动格局性能是激光雷达产品获得下游客户青睐的重要指标,衡量激光雷达性能的指标主要包括探测距离、测

6、距精度、角分辨率、视场角范围、功耗、体积、集成度等。车企通常要求激光雷达在高速场景下具有150米以上的探测距离、120的宽视角以满足十字路口等特殊场景的检测、误差小于3cm测距精度、误差小于0.3的水平与垂直角分辨率、百万级别点频和较小的体积等。全球激光雷达市场设计方案导入或以机械式(含转镜、棱镜)方案为主,未来有望由混合固态过渡到固态方案。机械式激光雷达的扫描系统中,需要高可靠性的旋转电机和多个激光发射器,同时多部件结构所需的系统综合制造成本也较高,因此整体成本较高。MEMS激光雷达发射和接收激光器大幅减少,当前受限于MEMS振镜价格较高,大规模量产后MEMS振镜有望降低至30-50美元,或

7、具备成本优势;但MEMS激光雷达接收端的收光孔径较小,光接收功率远低于机械式激光雷达,因此具有信噪比低、有效距离短及FOV窄的缺点。机械式激光雷达实现高线束需要多个激光发射器,同时扫描系统依赖电机,部件、制造、系统成本都很高。以Velodyne的64线激光雷达为例,采用了16组激光发射器以及2组激光接收器,产品结构复杂。据汽车之心,Velodyne的机械式激光雷达PuckVLP16总BOM成本约830990美元。混合固态激光雷达BOM成本显著低于机械式激光雷达。据SystemplusConsulting,Valeo的转镜式激光雷达Scala1(4线)总BOM成本约为300美元,MEMS微振镜式

8、激光雷达根据振镜和光源不同制造成本范围约为4501200美元。其中MEMS激光雷达相比转镜式在光学、机械性能和功耗方面表现更佳,同时得益于激光收发单元数量的减少,以及MEMS振镜随量产有较大的降价空间,混合固态激光雷达中MEMS方案或能达到更低的成本。Flash激光雷达设计简洁、元件少、成本低,是目前纯固态激光雷达的主流方案。Flash激光雷达产品在消费电子领域产品成熟度较高,但在车载领域还需解决高能量发射的痛点,当前还难以实现远距离探测,主要用作补盲。为了克服探测距离的限制,相关企业纷纷探索基于VCSEL+SPAD的单光子面阵方案,其中ibeo推出的ibeoNEXT产品具备12880分辨率,

9、采用顺序扫描的工作方式,探测距离可达140m(10%反射率),当前已具备量产能力;Ouster于2020年发布了具备200m(10%反射率)探测能力的ES2;国内企业奥锐达同样推出了ordarrayTM系列激光雷达。OPA固态激光雷达潜力较大,当前还处于发展初期。光学相控阵OPA固态激光雷达采用多个光源组成阵列,通过控制各光源发射的时间差合成角度灵活、精密可控的主光束。OPA光学相控阵的核心是光学相控阵单元,目前还没有成熟的技术,突破时间或较为漫长。Quanergy是OPA激光雷达的典型代表,其光学相控阵固态激光雷达产品S3-2TM探测距离7m(10%反射率),或主要针对工业设计。2022年5

10、月10日,Quanergy宣布其光学相控阵(OPA)技术已成功实现250米的距离检测。芯片化架构、硅光器件研发、算法优化等均有望降低激光雷达成本。TOF激光雷达可通过开发VCESL和单光子器件的专用芯片降低成本。FMCW激光雷达所需线性调频光源可研发硅光器件取代成本高昂的分立外腔激光器和铌酸锂调制器,探测器可将基于硅光技术的锗硅探测器在接收模块中集成为BPD阵列,进一步与系统其他模块的硅基器件单片集成,有效降低尺寸和成本。此外,芯片化架构的激光雷达还能节省对每个激光器进行单独光学调试的人力成本。二、 发射模块:VCSEL易于集成功率密度低,FMCW光源处于发展期EEL(EdgeEmitting

11、Laser)边发射激光器具有高发光功率密度的优势,但因其发光面位于半导体晶圆的侧面,使用过程中需要进行切割、翻转、镀膜、再切割的工艺步骤,往往只能通过单颗一一贴装的方式和电路板整合,而且每颗激光器需要使用分立的光学器件进行光束发散角的压缩和独立手工装调,比较依赖产线工人的手工装调技术,生产成本高且一致性难以保障。VCSEL(verticalcavitysurfaceemittinglaser)垂直腔面发射激光器具有易于二维集成、阈值低、光束质量好、调制频率高、寿命长、单模工作稳定、易于实现低温漂系数等优点。然而传统的VCSEL激光器存在发光功率密度低的缺陷,导致只在对测距要求近的应用领域有相应

12、的激光雷达产品(通常50m)。VCSEL激光器自上而下包括P型欧姆接触电极、P型掺杂的分布式布拉格反射镜(DBR)、氧化限制层、多量子阱有源区、N型掺杂DBR、衬底以及N型欧姆接触电极。量子阱有源区位于n型掺杂和p型掺杂的DBR之间。DBR反射镜具有大于99%的反射率。有源区的光学厚度为1/2激光波长的整数倍,通过P-contact向有源区注入电流并产生受激辐射的光子在DBR中往复被反射并谐振放大,从而形成激光。近年来国内外多家VCSEL激光器公司纷纷开发了多层结VCSEL激光器,将其发光功率密度提升了510倍。2021年,Lumentum发布了新款高功率、高效率的五结和六结VCSEL阵列,每

13、个发射孔的光功率超过2W,从而使得1平方毫米VCSEL阵列的峰值功率超过800W。功率密度提升为应用VCSEL开发长距激光雷达提供了可能,结合其平面化所带来的生产成本和产品可靠性方面的收益,VCSEL未来有望取代EEL。FMCW激光雷达的光源不同于ToF激光雷达,窄线宽的线性调频光是实现相干检测的基础。目前商用的能够实现窄线宽输出的激光器有四种类型:分布式反馈激光器(DFB)、分布式布拉格反射激光器(DBR)、外腔激光器以及通过窄线宽激光器的种子元加上外调制的方案。第二章 项目背景、必要性一、 智能驾驶为主要驱动力,市场空间广阔智能驾驶采用不同类型的传感器实现车辆对周边道路、行人、障碍物、路侧

14、单元及其他车辆的感知,在不同程度上实现车辆安全、自主、智能驾驶,是激光雷达的重要应用场景,可根据驾驶员与自动驾驶系统参与程度分为五个等级。典型的智能驾驶系统包括环境感知、决策规划和控制执行三大部分。其中环境感知系统主要包括摄像头、超声波雷达、毫米波雷达和激光雷达等传感器。激光雷达性能好、精度高,或为智能汽车核心传感器。激光雷达常应用于高精度电子地图和定位、障碍物识别、可通行空间检测、障碍物轨迹预测等方面,具备分辨率高、探测范围广、信息量丰富等优势,或为实现汽车智能驾驶的核心装置。智能汽车激光雷达需求有望随驾驶自动化水平提升不断增加。当前驾驶自动化水平正处于不断提升的过程中,据ICVTank,全

15、球高级别自动驾驶渗透率呈上升趋势,即搭载激光雷达的智能汽车销量有望提升。据麦姆斯咨询,L3、L4和L5级别自动驾驶则分别需要搭载1颗、2-3颗与4-6颗激光雷达,随驾驶自动化水平提升单车激光雷达搭载数量不断增加。移动机器人、智慧城市与测绘为典型应用,与车载领域相比性能需求不同服务型机器人、智慧城市及测绘是激光雷达的典型应用场景,对激光雷达性能有不同要求。例如应用于工业领域的YDLIDAR激光雷达测距最远为30米,应用于测绘等领域的华测导航激光雷达最远测程可达1350米,与禾赛科技车载领域典型产品Pandar128测距能力200米完全不同。据沙利文,2019年国内和全球智慧城市与测绘领域在激光雷达市场份额中占比最高,分别达70%和61%。政策支持机器人行业发展,移动机器人有望受益。借助强大的内置感知系统及控制系统,移动机器人能够完成多种无人作业,从而减轻对人力的依赖,提高生产效率。为推进我国机器人产业发展,有关部门相继制定发布了一系列政策,例如2021年12

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 行业资料 > 国内外标准规范

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号