橡胶配方设计与性能的关系

上传人:新** 文档编号:469652898 上传时间:2023-10-02 格式:DOCX 页数:9 大小:22.52KB
返回 下载 相关 举报
橡胶配方设计与性能的关系_第1页
第1页 / 共9页
橡胶配方设计与性能的关系_第2页
第2页 / 共9页
橡胶配方设计与性能的关系_第3页
第3页 / 共9页
橡胶配方设计与性能的关系_第4页
第4页 / 共9页
橡胶配方设计与性能的关系_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《橡胶配方设计与性能的关系》由会员分享,可在线阅读,更多相关《橡胶配方设计与性能的关系(9页珍藏版)》请在金锄头文库上搜索。

1、第二节 橡胶配方设计与性能的关系 一、橡胶配方设计与硫化橡胶物理性能的关系(一)拉伸强度拉伸强度表征硫化橡胶能够抵抗拉伸破坏的极限能力 .虽然绝大多数橡胶制品在使用条件 下,不会发生比原来长度大几倍的形变,但许多橡胶制品的实际使用寿命与拉伸强度有较好 的相关性。 研究高聚物断裂强度的结果表明,大分子的主价健、分子间的作用力(次价健) 以及大分子链的柔性、松弛过程等是决定高聚物拉伸强度的内在因素。下面从各个配合体系来讨论提高拉伸强度的方法。1 橡胶结构与拉伸强度的关系相对分子质量为(3。03.5)X105的生胶,对保证较高的拉伸强度有利。主链上有极性取代基时,会使分子间的作用力增加,拉伸强度也随

2、之提高。例如丁腈橡胶随 丙烯腈含量增加,拉伸强度随之增大.随结晶度提高,分子排列会更加紧密有序,使孔隙和微观缺陷减少,分子间作用力增强,大 分子链段运动较为困难,从而使拉伸强度提高。橡胶分子链取向后,与分子链平行方向的拉 伸强度增加。2 硫化体系与拉伸强度的关系欲获得较高的拉伸强度必须使交联密度适度,即交联剂的用量要适宜. 交联键类型与硫化橡 胶拉伸强度的关系,按下列顺序递减:离子键多硫键双硫键单硫键碳一碳键。拉伸 强度随交联键键能增加而减小,因为键能较小的弱键,在应力状态下能起到释放应力的作用, 减轻应力集中的程度,使交联网链能均匀地承受较大的应力。3 补强填充体系与拉伸强度的关系 补强剂的

3、最佳用量与补强剂的性质、胶种以及配方中 的其他组分有关:例如炭黑的粒径越小,表面活性越大,达到最大拉伸强度时的用量趋于减 少;软质橡胶的炭黑用量在4060份时,硫化胶的拉伸强度较好。4 增塑体系与拉伸强度的关系总地来说,软化剂用量超过5份时,就会使硫化胶的拉伸强度降低.对非极性的不饱和橡胶(如NR、IR、SBR、BR) ,芳烃油对其硫化胶的拉伸强度影响较小;石蜡油对它则有不良的影响;环烷油的影响介于两者之间。对不饱和度很低的非极性橡胶如EPDM、IIR,最好使用不饱和 度低的石蜡油和环烷油。对极性不饱和橡胶(如NBR, CR),最好采用酯类和芳烃油软化剂. 为提高硫化胶的拉伸强度,选用古马隆树

4、脂、苯乙烯茚树脂、高分子低聚物以及高黏度的 油更有利一些。5 提高硫化胶拉伸强度的其他方法(1)橡胶和某些树脂共混改性 例如NR/PE共混、NBR/PVC共混、EPDM/PP共混等均可提 高共混胶的拉伸强度。( 2) 橡胶的化学改性 通过改性剂在橡胶分子之间或橡胶与填料之间生成化学键和吸附 键,以提高硫化胶的拉伸强度。( 3) 填料表面改性 使用表面活性、偶联剂对填料表面进行处理,以改善填料与橡胶大分 子间的界面亲和力,不仅有助于填料的分散,而且可以改善硫化胶的力学性能.(二) 定伸应力和硬度 定伸应力和硬度都是表征硫化橡胶刚度的重要指标,两者均表征硫化胶产生一定形变所需要 的力。定伸应力与较

5、大的拉伸形变有关,而硬度与较小的压缩形变有关。1 橡胶分子结构与定伸应力的关系 橡胶分子量越大,游离末端越少,有效链数越多,定伸应力也越大。 凡是能增加橡胶大分子间作用力的结构因素,都可以提高硫化胶网络抵抗变形的能力,使定 伸应力提高。例如橡胶大分子主链上带有极性原子或极性基团、结晶型橡胶等结构因素使分 子间作用力增加,因此其定伸应力较高.2 硫化体系与定伸应力的关系 交联密度对定伸应力的影响较为显著。随交联密度增大,定伸应力和硬度几乎呈线性增加.3 填充体系与定伸应力的关系 填充的品种和用量是影响硫化胶定伸应力和硬度的主要因素。 定伸应力和硬度均随填料粒 径减小而增大,随结构度和表面活性增大

6、而增大,随填料用量增加而增大。4 提高硫化胶定伸应力和硬度的其他方法(1) 使用酚醛树脂/硬化剂,可与橡胶生成三维空间网络结构,使硫化胶的邵尔A硬度达 到95。例如用烷基间苯二酚环氧树脂15份/促进剂H1.5份,可制作高硬度的胎圈胶条.(2) 在 EPDM 中添加液态二烯类橡胶和多量硫黄,可制出硫化特性和加工性能优良的高硬 度硫化胶。(3)在NBR中添加齐聚酯,NBR/PVC共混、NBR/三元尼龙共混等方法均可使硫化胶的邵尔 A 硬度达到 90。(三) 撕裂强度 撕裂是由于硫化胶中的裂纹或裂口受力时迅速扩展、开裂而导致的破坏现象。撕裂强度是试 样被撕裂时单位厚度所承受的负荷。撕裂强度与拉伸强度

7、之间没有直接的关系,也就是说拉伸强度高的硫化胶其撕裂强度不一定 也高。1 橡胶分子结构与撕裂强度的关系 随分子量增加,分子间的作用力增大,撕裂强度增大; 但是当分子量增大到一定程度时,其撕裂强度逐渐趋势于平衡。结晶型橡胶在常温下的撕裂 强度比非结晶型橡胶高。常温下NR和CR的撕裂强度较高,这是因为结晶型橡胶撕裂时产生的诱导结晶,使应变能力 大为提高。但是高温下除NR夕卜,撕裂强度均明显降低而填充炭黑后的硫化胶撕裂强度均明 显提高。2 硫化体系与撕裂强度的关系撕裂强度随交联密度增大而增大,但达到最大值后,交联密度再增加,撕裂强度则急剧下降. 3 填充体系与撕裂强度的关系 随炭黑粒径减小,撕裂强度

8、增加。在粒径相同的情况下,结构度低的炭黑对撕裂强度有利。 使用各向同性的填料,如炭黑、白炭黑、白艳华、立德粉和氧化锌等,可获得较高的撕裂强 度;而使用各向异性的填料,如陶土、碳酸镁等则不能得到高撕裂强度.某些改性的无机填料,如用羧化聚丁二烯(CPB)改性的碳酸钙、氢氧化铝,可提高SBR硫 化胶的撕裂强度。4 增塑体系对撕裂强度的影响5 一般添加软化剂会使硫化胶的撕裂强度降低。尤其是石蜡油对 SBR 硫化胶的撕裂强度 极为不利,而芳烃油则可使SBR硫化胶具有较高的撕裂强度,随芳烃油用量增加。(四)耐磨耗性 耐磨耗性表征硫化胶抵抗摩擦力作用下因表面磨损而使材料损耗的能力。它是个与橡胶 制品使用寿命

9、密切相关的力学性能,它不仅与使用条件、摩擦副的表面状态以及制品的结构 有关,而且与硫化胶的其他力学性能和黏弹性能等物理-化学性质等有关,其影响因素很多。 1胶种的影响在通用的二烯类橡胶中,耐磨耗性按下列顺序递减:BR溶聚SBR乳聚SBRNRIR。BR 耐磨耗性好的主要原因是它的玻璃化温度(Tg)较低(一95105C),分子链柔顺性好,弹 性高。 SBR 的耐磨耗性随分子量增加而提高。NBR硫化胶的耐磨耗性随丙烯腈含量增加而提高,XNBR的耐磨耗性比NBR好。聚氨酯(PU) 是所有橡胶中耐磨耗性最好的一种橡胶,在常温下具有优异的耐磨性,但在高温下它的耐磨 性会急剧下降。2硫化体系的影响硫化胶的耐

10、磨耗性随交联密度增加有一个最佳值,该最佳值不仅取决于硫化体系而且和炭黑 的用量及结构有关.在提高炭黑的用量和结构度时,由炭黑所提供的刚度就会增加,若要保 持硫化胶刚度的最佳值,就必须降低由硫化体系所提供的刚性部分,即适当地降低交联密度, 反之则应提高硫化胶的交联密度。3填充体系的影响 通常硫化胶的耐磨耗性随炭黑粒径减小,随表面活性和分散性的增加而提高。 填充新工艺 炭黑和用硅烷偶联剂处理的白炭黑均可提高硫化胶的耐磨耗性。 4 增塑体系的影响 一般说来,胶料中加入软化剂都会使耐磨耗性降低是NR和SBR中采用芳烃油时,耐磨耗性 损失较其他油类小一些。5 防护体系的影响在疲劳磨耗的条件下,添加适当的

11、防老剂可有效地提高硫化胶的耐磨耗性。如4010NA效果突出,除4010NA外,6PPD、DTPD、DPPD/H等均有一定的防止疲劳老化的效果。6 提高硫化胶耐磨耗性的其他方法(1)炭黑改性剂 添加少量含硝基化合物的炭黑改性剂或其他分散剂,可改善炭黑的分散 度,提高硫化胶的耐磨耗性。(2)硫化胶表面处理 使用含卤素化合物的溶液或气体,例如液态五氟化锑、气态五氟化锑,对 NBR 等硫化胶表面进行处理,可降低硫化胶表面的摩擦系数,提高耐磨耗性。(3)应用硅烷偶联剂改性填料 例如使用硅烷偶联剂A189处理的白炭黑,填充于NBR 胶料中,其硫化胶的耐磨耗性明显提高,用硅烷偶联剂 Si69 处理的白炭黑填

12、充的 EPDM 硫化胶,其耐磨耗性也能明显提高。(4)橡塑共混 橡塑共混是提高硫化胶耐磨耗性的有效途径之一。例如 NBR/PVC、 NBR/ 三元尼龙等均可提高硫化胶的耐磨耗性.(5)添加固体润滑剂和减磨性材料 例如在 NBR 胶料中添加石墨、二硫化钼、氮化硅、碳纤维等,可使硫化胶的磨擦系数降低,耐磨耗性提高.(五)弹性橡胶的高弹性是由卷曲大分子的构象熵变化而造成的. 1 橡胶分子结构与弹性的关系 分子量越大,对弹性没有贡献的游离末端数量越少;分子链内彼此缠结而导致的“准交联” 效应增加,因此分子量大有利于弹性的提高。在常温下不易结晶的由柔性分子链组成的高聚物,分子链的柔性越大,弹性越好。 2

13、 硫化 体系与弹性的关系 随交联密度增加,硫化胶的弹性增大并出现最大值,随后交联密度继续增大,弹性则呈下降 趋势。因为适度的交联可减少分子链滑移而形成的不可逆形变,有利于弹性提高.交联过度 会造成分子链的活动受阻,而使弹性下降.3 填充体系与弹性的关系 硫化胶的弹性完全是由橡胶大分子的构象变化所造成的,所以提高含胶率是提高弹性最直 接、最有效的方法,因此为了获得高弹性,应尽量减少填充剂用量,增加生胶含量。但为了 降低成本,应选用适当的填料。4 增塑体系与硫化胶弹性的关系 软化剂对弹性的影响与其和橡胶的相容性有关。软化剂与橡胶的相容性越差,硫化胶的弹性 越差。(六)疲劳与疲劳破坏1 耐被劳破坏性

14、与胶种的关系从 NR 、 SBR 硫化胶的疲劳破坏试验中发现,在应变量为 120%时, NR 和 SBR 耐疲劳破坏的相对优势发生转化:SBR在应变量小于120%时,其疲劳寿命次数高于NR;而在低于120%时 则低于NR。NR的耐疲劳破坏性恰好与SBR相反。一、 橡胶配方设计与使用性能的关系 (一) 耐热性 所谓耐热性是指硫化胶在高温长时间热老化作用下,保持原有物理性能的能力。 1 橡胶 的选择 大量研究表明,耐热聚合物的结构特点是:分子链高度有序;刚性大;有高度僵硬的结构; 分子间作用力大;具有较高的熔点或软化点例如聚四氟乙烯(PTFE),使用温度为315C,完全 符合上述结构特点。目前作为

15、耐热橡胶经常使用的有EPDM、IIR、CSM、ACM、HNBR、FKM和Q。2.硫化体 系的选择不同的硫化体系形成不同的交联键,各种交联键的键能和吸氧速度不同,键能越大,硫化胶的 热稳定性越好;吸氧速度越慢,硫化胶的耐热氧老化性越好。在常用的硫化体系中,过氧化物硫化体系的耐热性最好。 目前 EPDM 的耐热配合几乎都采 用过氧化物硫化体系。单独使用过氧化物作硫化剂时,存在交联密度低、热撕裂强度低等问 题。最好是和某些共交联剂交用。3 防护体系的选择 橡胶制品在高温使用条件下,防老剂可能因挥发、迁移等原因迅速损耗,从而引起制品性能 劣化。因此在耐热橡胶配方中,应使用挥发性小的防老剂或分子量大的抗氧剂,最好是使用 聚合型或反应型防老剂.4 填充体系的影响 无机填料的耐热性比炭黑好,无机填料中耐热性比较好的有白炭黑、氧化锌、氧化美、三氧 化二铝和硅酸盐.5 软化剂的影响 一般软化剂分子量低,高温下易挥发或迁移,导致硫化胶硬度增加、伸长率降低.所以耐热 橡胶配方中应选用高温下热稳定性好、不易挥发的品种.(二)耐寒性 橡胶的耐寒性可定义为在规定的低温下,保持其弹性和正常工作的能力。硫化胶的耐寒性主要取决于高聚物的两个基本物性,即玻璃化转变温度(Tg)t和结晶。对 于非结晶型橡胶的耐寒性,可用Tg和Tb (脆性温度)表征。对结晶型橡胶则不能用Tg、Tb来表征它的耐寒性,能高于Tg7080C

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号