高中数学选修2-3第二章章节总结

上传人:壹****1 文档编号:467196923 上传时间:2022-11-24 格式:DOC 页数:8 大小:2.05MB
返回 下载 相关 举报
高中数学选修2-3第二章章节总结_第1页
第1页 / 共8页
高中数学选修2-3第二章章节总结_第2页
第2页 / 共8页
高中数学选修2-3第二章章节总结_第3页
第3页 / 共8页
高中数学选修2-3第二章章节总结_第4页
第4页 / 共8页
高中数学选修2-3第二章章节总结_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《高中数学选修2-3第二章章节总结》由会员分享,可在线阅读,更多相关《高中数学选修2-3第二章章节总结(8页珍藏版)》请在金锄头文库上搜索。

1、高中数学选修2-3第二章总结一、知识梳理1.条件概率与事件的独立性(1)条件概率:一般地,若有两个事件A和B,在已知事件B发生的条件下考虑事件A发生的概率,则称此概率为B已发生的条件下A的条件概率,记为P(AB).一般地,若P(B)0,则事件B已发生的条件下A发生的条件概率是 (2)事件的独立性:设A, B为两个事件,如果 P(AB)=P(A) P(B) , 则称事件A与事件B相互独立.事件(或)是否发生对事件(或)发生的概率没有影响,这样的两个事件叫做相互独立事件若与是相互独立事件,则与,与,与也相互独立相互独立事件同时发生的概率:两个相互独立事件同时发生的概率,等于每个事件发生的概率的积一

2、般地,如果事件相互独立,那么这个事件同时发生的概率,等于每个事件发生的概率的积,即(3)独立重复性:独立重复试验的定义:指在同样条件下进行的,各次之间相互独立的一种试验独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是,那么在次独立重复试验中这个事件恰好发生次的概率它是展开式的第项离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数是一个随机变量如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是,(k0,1,2,,n,)于是得到随机变量的概率分布如下:01knP由于恰好是二项展开式

3、中的各项的值,所以称这样的随机变量服从二项分布,记作B(n,p),其中n,p为参数,并记b(k;n,p)2.离散型随机变量(1)离散型随机变量:随着试验结果变化而变化的变量称为随机变量随机变量常用字母 X , Y, 表示在此基础之上所有取值可以一一列出的随机变量,称为离散型随机变量.(2)离散型随机变量分布列:设离散型随机变量可能取得值为x1,x2,x3,取每一个值xi(i=1,2,)的概率为,则称表x1x2xiPP1P2Pi为随机变量的概率分布,简称分布列 离散型随机变量分布列的两个性质:任何随机事件发生的概率都满足:,并且不可能事件的概率为0,必然事件的概率为1由此你可以得出离散型随机变量

4、的分布列都具有下面两个性质:Pi0,i1,2,;P1+P2+=1对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和 即 (3)离散型随机变量的数学期望与方差:均值或数学期望: 一般地,若离散型随机变量的概率分布为x1x2xnPp1p2pn则称 为的均值或数学期望,简称期望均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平 平均数、均值:一般地,在有限取值离散型随机变量的概率分布中,令,则有,所以的数学期望又称为平均数、均值 均值或期望的一个性质:若(a、b是常数),是随机变量,则也是随机变量,它们的分布列为x1x2xnPp1p2pn于是 )

5、,由此,我们得到了期望的一个性质:若B(n,p),则E=np 证明如下:,012kn又, 01P故若B(n,p),则np3常用的分布(1)两点分布 随机变量 X 的分布列是像上面这样的分布列称为两点分布列(2)二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数是一个随机变量如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是,(k0,1,2,,n,)于是得到随机变量的概率分布如下:01knP称这样的随机变量服从二项分布,记作B(n,p)其中n,p为参数,并记b(k;n,p)(3)超几何分布一般地,在含有M 件次品

6、的 N 件产品中,任取 n 件,其中恰有X件次品数,则事件 X=k发生的概率为,其中,且称分布列X01P为超几何分布列如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布. 4正态分布总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线它反映了总体在各个范围内取值的概率根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积观察总体密度曲线的形状,它具有“两头低,中间高,左右对

7、称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示:式中的实数、是参数,分别表示总体的平均数与标准差,的图象为正态分布密度曲线,简称正态曲线一般地,如果对于任何实数,随机变量X满足,则称 X 的分布为正态分布正态分布完全由参数和确定,因此正态分布常记作如果随机变量 X 服从正态分布,则记为X. 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布(1)正态分布)是由均值和标准差唯一决定的分布通过固定其中一个值,讨论均值与标准差对于正态曲线的影响 (2)通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间

8、高、左右对称 正态曲线的作图,书中没有做要求,教师也不必补上 讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面均值与标准差对图形的影响,引导学生观察总结正态曲线的性质 (3)正态曲线的性质:曲线在x轴的上方,与x轴不相交 曲线关于直线x=对称 当x=时,曲线位于最高点 当x时,曲线上升(增函数);当x时,曲线下降(减函数) 并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近 一定时,曲线的形状由确定 越大,曲线越“矮胖”,总体分布越分散;越小曲线越“瘦高”总体分布越集中:五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比

9、教学 (4)标准正态曲线:当=0、=l时,正态总体称为标准正态总体,其相应的函数表示式是,(-x+)其相应的曲线称为标准正态曲线 标准正态总体N(0,1)在正态总体的研究中占有重要的地位 任何正态分布的概率问题均可转化成标准正态分布的概率问题 二、典型习题讲解1 人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率: (1)第次拨号才接通电话;(2)拨号不超过次而接通电话 解:设第次拨号接通电话,(1)第次才接通电话可表示为于是所求概率为(2)拨号不超过次而接通电话可表示为:于是所求概率为 2 出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗

10、到红灯这一事件是相互独立的,并且概率都是 (1)求这位司机遇到红灯前,已经通过了两个交通岗的概率; (2)求这位司机在途中遇到红灯数的期望和方差 解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以(2)易知 3 奖器有个小球,其中个小球上标有数字,个小球上标有数字,现摇出个小球,规定所得奖金(元)为这个小球上记号之和,求此次摇奖获得奖金数额的数学期望解:设此次摇奖的奖金数额为元,当摇出的个小球均标有数字时,;当摇出的个小球中有个标有数字,1个标有数字时,;当摇出的个小球有个标有数字,个标有数字时, 所以 答:此次摇奖获得奖金数额的数字期望是元 4 某学生语、数、英三

11、科考试成绩,在一次考试中排名全班第一的概率:语文为,数学为,英语为,问一次考试中()三科成绩均未获得第一名的概率是多少?()恰有一科成绩未获得第一名的概率是多少解:分别记该生语、数、英考试成绩排名全班第一的事件为,则 ()答:三科成绩均未获得第一名的概率是 ()() 答:恰有一科成绩未获得第一名的概率是5 如图,两点之间有条网线并联,它们能通过的最大信息量分别为 现从中任取三条网线且使每条网线通过最大的信息量 (I)设选取的三条网线由到可通过的信息总量为,当时,则保证信息畅通 求线路信息畅通的概率;(II)求选取的三条网线可通过信息总量的数学期望 解:(I) (II) 线路通过信息量的数学期望

12、 答:(I)线路信息畅通的概率是 (II)线路通过信息量的数学期望是6 三个元件正常工作的概率分别为将它们中某两个元件并联后再和第三元件串联接入电路 ()在如图的电路中,电路不发生故障的概率是多少?()三个元件连成怎样的电路,才能使电路中不发生故障的概率最大?请画出此时电路图,并说明理由 解:记“三个元件正常工作”分别为事件,则 ()不发生故障的事件为 不发生故障的概率为()如图,此时不发生故障的概率最大 证明如下:图1中发生故障事件为不发生故障概率为图2不发生故障事件为,同理不发生故障概率为7 要制造一种机器零件,甲机床废品率为,而乙机床废品率为,而它们的生产是独立的,从它们制造的产品中,分

13、别任意抽取一件,求:(1)其中至少有一件废品的概率;(2)其中至多有一件废品的概率 解:设事件“从甲机床抽得的一件是废品”;“从乙机床抽得的一件是废品” 则(1)至少有一件废品的概率 (2)至多有一件废品的概率 8 甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为,被甲或乙解出的概率为,(1)求该题被乙独立解出的概率;(2)求解出该题的人数的数学期望和方差解:(1)记甲、乙分别解出此题的事件记为 设甲独立解出此题的概率为,乙为 则 9 某保险公司新开设了一项保险业务,若在一年内事件发生,该公司要赔偿元设在一年内发生的概率为,为使公司收益的期望值等于的百分之十,公司应要求顾客交多少保险金

14、?解:设保险公司要求顾客交元保险金,若以 表示公司每年的收益额,则是一个随机变量,其分布列为:因此,公司每年收益的期望值为 为使公司收益的期望值等于的百分之十,只需,即,故可得 即顾客交的保险金为 时,可使公司期望获益 10 有一批食品出厂前要进行五项指标检验,如果有两项指标不合格,则这批食品不能出厂 已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是 (1)求这批产品不能出厂的概率(保留三位有效数字);(2)求直至五项指标全部验完毕,才能确定该批食品是否出厂的概率(保留三位有效数字) 解:(1)这批食品不能出厂的概率是: (2)五项指标全部检验完毕,这批食品可以出厂的概率是: 五项指标全部检验完毕,这批食品不能出厂的概率是:由互斥事件有一个发生

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 幼儿/小学教育 > 小学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号