(江苏专用)高考数学二轮复习 专题检测32 与直线和圆有关的最值问题

上传人:不*** 文档编号:378956198 上传时间:2024-02-05 格式:DOC 页数:6 大小:92.50KB
返回 下载 相关 举报
(江苏专用)高考数学二轮复习 专题检测32 与直线和圆有关的最值问题_第1页
第1页 / 共6页
(江苏专用)高考数学二轮复习 专题检测32 与直线和圆有关的最值问题_第2页
第2页 / 共6页
(江苏专用)高考数学二轮复习 专题检测32 与直线和圆有关的最值问题_第3页
第3页 / 共6页
亲,该文档总共6页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《(江苏专用)高考数学二轮复习 专题检测32 与直线和圆有关的最值问题》由会员分享,可在线阅读,更多相关《(江苏专用)高考数学二轮复习 专题检测32 与直线和圆有关的最值问题(6页珍藏版)》请在金锄头文库上搜索。

1、32与直线和圆有关的最值问题1若动点A,B分别在直线l1:xy70和l2:xy50上移动,则AB的中点M到原点的距离的最小值为_答案3解析依题意知,AB的中点M的集合是与直线l1:xy70和l2:xy50距离都相等的直线,则M到原点的距离的最小值为原点到该直线的距离设点M所在直线的方程为l:xym0,根据平行线间的距离公式得|m7|m5|m6,即l:xy60,根据点到直线的距离公式,得M到原点的距离的最小值为3.2已知点M是直线3x4y20上的动点,点N为圆(x1)2(y1)21上的动点,则MN的最小值是_答案解析圆心(1,1)到点M的距离的最小值为点(1,1)到直线的距离d,故点N到点M的距

2、离的最小值为d1.3已知P是直线l:3x4y110上的动点,PA,PB是圆x2y22x2y10的两条切线,C是圆心,那么四边形PACB面积的最小值是_答案解析如图所示,圆的标准方程为(x1)2(y1)21,圆心为C(1,1),半径为r1.根据对称性可知四边形PACB面积等于2SAPC2PArPA,故PA最小时,四边形PACB的面积最小,由于PA,故PC最小时,PA最小,此时,直线CP垂直于直线l:3x4y110,故PC的最小值为圆心C到直线l:3x4y110的距离d2,所以PA.故四边形PACB面积的最小值为.4(2013江西改编)过点(,0)引直线l与曲线y相交于A、B两点,O为坐标原点,当

3、AOB的面积取最大值时,直线l的斜率为_答案解析SAOBOAOBsinAOBsinAOB.当AOB时,SAOB面积最大此时O到AB的距离d.设AB方程为yk(x)(k0),即kxyk0.由d,得k.5过点P(1,1)的直线,将圆形区域(x,y)|x2y24分为两部分,使得这两部分的面积之差最大,则该直线的方程为_答案xy20解析由题意知,当圆心与P的连线和过点P的直线垂直时,符合条件圆心O与P点连线的斜率k1,所以直线OP垂直于xy20.6已知,直线ymx2m和曲线y有两个不同的交点,它们围成的平面区域为M,向区域上随机投一点A,点A落在区域M内的概率为P(M),若P(M),则实数m的取值范围

4、是_答案0,1解析画出图形,不难发现直线恒过定点(2,0),圆是上半圆,直线过(2,0),(0,2)时,向区域上随机投一点A,点A落在区域M内的概率为P(M),此时P(M),当直线与x轴重合时,P(M)1,故直线的斜率范围是0,17在平面直角坐标系xOy中,圆C的方程为x2y28x150,若直线ykx2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是_答案解析可转化为圆C的圆心到直线ykx2的距离不大于2.圆C的标准方程为(x4)2y21,圆心为(4,0)由题意知(4,0)到kxy20的距离应不大于2,即2.整理,得3k24k0,解得0k.故k的最大值是.8直线l过

5、点(0,4),从直线l上的一点P作圆C:x2y22y0的切线PA,PB(A,B为切点),若四边形PACB面积的最小值为2,则直线l的斜率k为_答案2解析易知圆的半径为1,因为四边形PACB的最小面积是2,此时切线段长为2,圆心(0,1)到直线ykx4的距离为,即,解得k2.9若直线axby1过点A(b,a),则以坐标原点O为圆心,OA长为半径的圆的面积的最小值是_答案解析直线axby1过点A(b,a),abab1.ab.又OA,以O为圆心,OA为半径的圆的面积为SOA2(a2b2)2ab,面积的最小值为.10与直线xy40和圆A:x2y22x2y0都相切的半径最小的圆C的方程是_答案(x1)2

6、(y1)22解析易知所求圆C的圆心在直线yx上,故设其坐标为C(c,c),又其直径为圆A的圆心A(1,1)到直线xy40的距离减去圆A的半径,即2r2r,即圆心C到直线xy40的距离等于,故有c3或c1,结合图形当c3时圆C在直线xy40下方,不符合题意,故所求圆的方程为(x1)2(y1)22.11已知点P(x,y)是圆(x2)2y21上任意一点(1)求点P到直线3x4y120的距离的最大值和最小值;(2)求的最大值和最小值解(1)圆心C(2,0)到直线3x4y120的距离为d.所以点P到直线3x4y120的距离的最大值为dr1,最小值为dr1.(2)设k,则直线kxyk20与圆(x2)2y2

7、1有公共点,1,k,kmax,kmin.即的最大值为,最小值为.12(2014苏州模拟)已知圆M的方程为x2y22x2y60,以坐标原点O为圆心的圆O与圆M相切(1)求圆O的方程;(2)圆O与x轴交于E,F两点,圆O内的动点D使得DE,DO,DF成等比数列,求的取值范围解(1)圆M的方程可整理为(x1)2(y1)28,故圆心M(1,1),半径R2.圆O的圆心为O(0,0),因为MO2,所以点O在圆M内,故圆O只能内切于圆M.设圆O的半径为r,因为圆O内切于圆M,所以MORr,即2r,解得r.所以圆O的方程为x2y22.(2)不妨设E(m,0),F(n,0),且mn.故E(,0),F(,0)设D(x,y),由DE,DO,DF成等比数列,得DEDFDO2,即x2y2,整理得x2y21.而(x,y),(x,y),所以(x)(x)(y)(y)x2y222y21.由于点D在圆O内,故有得y2,所以12y210,即1,0)

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 高考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号