2023-2024学年A佳教育大联盟高一数学第一学期期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1. (南昌高三文科数学(模拟一)第9题) 我国古代数学名著《九章算术》中有如下问题:今有甲乙丙三人持钱,甲语乙丙:各将公等所持钱,半以益我,钱成九十(意思是把你们两个手上的钱各分我一半,我手上就有钱);乙复语甲丙,各将公等所持钱,半以益我,钱成七十;丙复语甲乙:各将公等所持钱,半以益我,钱成五十六,则乙手上有钱.A. B.C. D.2.若角,则( )A. B.C. D.3.函数的部分图象如图所示,则,的值分别是()A.2, B.2,C.4, D.4,4.为了得到函数的图像,只需将函数的图像上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度5.已知,,,则,,的大小关系是( )A. B.C. D.6.已知关于的方程的两个实根为满足则实数的取值范围为A. B.C. D.7.已知,则()A. B.C. D.的取值范围是8.已知函数在 上有两个零点,则的取值范围为( )A. B.C. D.9.已知,都为单位向量,且,夹角的余弦值是,则 A. B.C. D.10.函数y=sin2x,xR的最小正周期是( )A.3π B.πC.2 D.1二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.若,则_____12.某工厂师徒二人各加工相同型号的零件2个,是否加工出精品均互不影响.已知师傅加工一个零件是精品的概率为,师徒二人各加工2个零件都是精品的概率为,则徒弟加工2个零件都是精品的概率为______13.已知函数在区间,上恒有则实数的取值范围是_____.14.已知函数()①当时的值域为__________;②若在区间上单调递增,则的取值范围是__________15.已知幂函数的图象过点,则________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.如图,射线、分别与轴正半轴成和角,过点作直线分别交、于、两点,当的中点恰好落在直线上时,求直线的方程17.已知集合,集合(1)当时,求和(2)若,求实数m的取值范围18.已知函数f (x)=(a,b为常数,且a≠0)满足f (2)=1,方程f (x)=x有唯一解,(1)求函数f(x)的解析式;(2)若,求函数的最大值.19.求值:(1);(2).20.某市郊区有一加油站,2018年初汽油的存储量为50吨,计划从年初起每周初均购进汽油吨,以满足城区内和城外汽车用油需求,已知城外汽车用油每周5吨;城区内汽车用油前个周需求量吨与的函数关系式为,为常数,且前4个周城区内汽车的汽油需求量为100吨.(1)试写出第个周结束时,汽油存储量(吨)与的函数关系式;(2)要使16个周内每周按计划购进汽油之后,加油站总能满足城区内和城外的需求,且每周结束时加油站的汽油存储量不超过150吨,试确定的取值范围.21.如图,已知圆心在x轴正半轴上的圆C与直线5x+12y+21=0相切,与y轴交于M,N两点且∠MCN=120°.(1)求圆C的标准方程;(2)求过点P(0,3)的直线l与圆C交于不同的两点D,E,若|DE|=2,求直线l的方程.参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】详解】设甲乙丙各有钱,则有解得,选B.2、C【解析】分母有理化再利用平方关系和商数关系化简得解.【详解】解:.故选:C3、B【解析】根据图象的两个点、的横坐标,得到四分之三个周期的值,得到周期的值,做出的值,把图象所过的一个点的坐标代入方程做出初相,写出解析式,代入数值得到结果【详解】解:由图象可得:,∴,∴,又由函数的图象经过,∴,∴,即,又由,则故选:B【点睛】本题考查由部分图象确定函数的解析式,属于基础题关键点点睛:本题解题的关键是利用代入点的坐标求出初相.4、B【解析】利用诱导公式,的图象变换规律,得出结论【详解】解:为了得到函数的图象,只需将函数图象上所有的点向右平移个单位长度,故选:B5、B【解析】分别求出的范围,然后再比较的大小.【详解】,, , , , ,并且 , ,综上可知故选:B【点睛】本题考查指对数和三角函数比较大小,意在考查转化与化归的思想和基础知识,属于基础题型.6、D【解析】利用二次方程实根分布列式可解得.【详解】设,根据二次方程实根分布可列式:,即,即,解得:.故选D.【点睛】本题考查了二次方程实根的分布.属基础题.7、B【解析】取判断A;由不等式的性质判断BC;由基本不等式判断D.【详解】当时,不成立,A错误.因为,所以,,B正确,C错误.当,时,,当且仅当时,等号成立,而,D错误故选:B8、B【解析】先化简,再令,求出范围,根据在上有两个零点,作图分析,求得的取值范围.【详解】,由,又,则可令,又函数在上有两个零点,作图分析:则,解得.故选:B.【点睛】本题考查了辅助角公式,换元法的运用,三角函数的图象与性质,属于中档题.9、D【解析】利用,结合数量积的定义可求得的平方的值,再开方即可【详解】依题意,,故选D【点睛】本题考查了平面向量数量积的性质及其运算,属基础题.向量数量积的运算主要掌握两点:一是数量积的基本公式;二是向量的平方等于向量模的平方.10、B【解析】根据解析式可直接求出最小正周期.【详解】函数的最小正周期为.故选:B.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】首先求函数,再求的值.【详解】设,则所以,即,,.故答案为:12、##0.25【解析】结合相互独立事件的乘法公式直接计算即可.【详解】记师傅加工两个零件都是精品的概率为,则,徒弟加工两个零件都是精品的概率为,则师徒二人各加工两个零件都是精品的概率为,求得,故徒弟加工两个零件都是精品的概率为.故答案为:13、【解析】根据对数函数的图象和性质可得,函数f(x)=loga(2x﹣a)在区间[]上恒有f(x)>0,即,或,分别解不等式组,可得答案【详解】若函数f(x)=loga(2x﹣a)在区间[]上恒有f(x)>0,则,或当时,解得<a<1,当时,不等式无解.综上实数的取值范围是(,1)故答案为(,1).【点睛】本题考查的知识点是复合函数的单调性,及不等式的解法,其中根据对数函数的图象和性质构造不等式组是解答的关键,属于中档题.14、 ①. ②.【解析】当时,分别求出两段函数的值域,取并集即可;若在区间上单调递增,则有,解之即可得解.【详解】解:当时,若,则,若,则,所以当时的值域为;由函数(),可得函数在上递增,在上递增,因为在区间上单调递增,所以,解得,所以若在区间上单调递增,则的取值范围是.故答案为:;.15、3【解析】先求得幂函数的解析式,再去求函数值即可.【详解】设幂函数,则,则,则,则故答案为:3三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、【解析】先求出、所在的直线方程,根据直线方程分别设A、B点坐标,进而求出的中点C的坐标,利用点C在直线上以及A、B、P三点共线列关系式解出B点坐标,从而求出直线AB的斜率,然后代入点斜式方程化简即可.【详解】解:由题意可得,,所以直线,设,,所以的中点由点在上,且、、三点共线得解得,所以又,所以所以,即直线的方程为【点睛】知识点点睛:(1)中点坐标公式:,则AB的中点为;(2)直线的点斜式方程:.17、(1)(或者);(或者)(2)【解析】(1)代入,结合集合的并、补运算即得解;(2)分,两种情况讨论,列出不等关系,计算即得解【小问1详解】当时,所以 (或者);(或者)【小问2详解】当时,则,解得当时,则,解得,所以m不存在综上所述,18、(1)f(x)=;(2).【解析】(1)由可得,由此方程的解唯一,可得 ,可求出,再由f (2)=1,可求出的值,进而可求出函数f(x)的解析式;(2)由题意可得,然后求出 的最小值,可得的最大值【详解】解:(1)由,得,即 .因为方程有唯一解,所以,即, 因为f (2)=1,所以=1,所以,所以= ;(2)因为,所以,而,当,即时,取得最小值 ,此时取得最大值.19、(1)112(2)3【解析】(1)依据幂的运算性质即可解决;(2)依据对数的运算性质及换底公式即可解决.【小问1详解】【小问2详解】20、 (1) (2) 【解析】(1)根据题意前4个周城区内汽车的汽油需求量为100吨,得,;(2)每周结束时加油站的汽油存储量不超过150吨,故,恒成立,转化为恒成立,通过换元分别求得函数的最值即可解析:(1)由已知条件得,解得.所以..(2)由题意,,所以,恒成立,即 恒成立.设,则,所以()恒成立,由()恒成立,得(当,即时取等号);由()恒成立,得(当,即时取等号),所以的取值范围是.点睛:这个题目考查了函数的实际应用;对于这种题目,首先理解好题意,找到函数模型,列出数学表达式,注意函数的定义域要结合实际.在处理表达式时,通常会遇到求函数的最值和值域的问题,一般高次的会用到求导,研究单调性等.也可能通过换元将函数转化为熟悉的二次,或单调函数.21、(1)(x﹣1)2+y2=4;(2)y或x=0【解析】(1)由题意设圆心为,且,再由已知求解三角形可得,于是可设圆的标准方程为,由点到直线的距离列式求得值,则圆的标准方程可求;(2)当直线的斜率存在时,设直线的方程为,即,利用圆心到直线的距离等于半径列式求得,可得直线方程,验证当时满足题意,则答案可求【详解】解:(1)由题意设圆心为,且,由,可得中,,,则,于是可设圆的标准方程为,又点到直线的距离,解得或(舍去)故圆的标准方程为;(2)当直线的斜率存在时,设直线的方程为,即则由题意可知,圆心到直线的距离故,解得又当时满足题意,故直线的方程为或【点睛】本题考查圆的标准方程的求法,考查直线与圆位置关系的应用,考查计算能力,是中档题. 。